[1] |
Mayrhofer P H, Mitterer C, Hultman L, et al. Microstructural design of hard coatings[J]. Progress in Materials Science,2006,51:1032−1114 doi: 10.1016/j.pmatsci.2006.02.002
|
[2] |
Shen Y, Liao B, Zhang Z, et al. Anti-sand erosion and tribological performance of thick DLC coatings deposited by the filtered cathodic vacuum arc[J]. Applied Surface Science,2020,533:147371 doi: 10.1016/j.apsusc.2020.147371
|
[3] |
Cao H, Ye X, Li H, et al. Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology[J]. Materials & Design,2021,198:109320
|
[4] |
Zhang S, Yan M, Yang Y, et al. Excellent mechanical, tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method[J]. Carbon,2019,151:136−147 doi: 10.1016/j.carbon.2019.05.031
|
[5] |
Shiri S, Ashtijoo P, Odeshi A, et al. Evaluation of Stoney equation for determining the internal stress of DLC thin films using an optical profiler[J]. Surface & Coatings Technology, 2016, 98−100
|
[6] |
Chen K T, Chang J H, Wu J Y. Modified stoney's equation for evaluation of residual stresses on thin film[J]. Applied Mechanics & Materials,2015,789−790:25−32
|
[7] |
郭有志, 孙丽丽, 郭鹏, 等. 自组织梯度分层结构金属掺杂类金刚石薄膜的制备及其性能研究[J]. 真空科学与技术学报,2018,38(9):764−771(in Chinese)
Guo Y, Sun L, Guo P, et al. Preparation and properties of diamond-like films and doped with self-organized gradient layered structures[J]. Journal of Vacuum Science and Technology,2018,38(9):764−771
|
[8] |
Wu Y, Chen J, Li H, et al. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering[J]. Applied Surface Science,2013,284:165−170 doi: 10.1016/j.apsusc.2013.07.074
|
[9] |
Jiang X H, Zhou B, Piliptsou D G, et al. Structure and mechanical properties of (Cu, Ti) - binary metal doped diamond-like carbon films[J]. Advanced Materials Research,2011,150−151:217−222
|
[10] |
林松盛, 代明江, 侯惠君, 等. 掺钛类金刚石膜的微观结构研究[J]. 真空科学与技术学报,2007,27(5):418−421(in Chinese) doi: 10.3969/j.issn.1672-7126.2007.05.012
Lin S, Dai M, Hou H, et al. Microstructure of Ti doped DLC films[J]. Journal of Vacuum Science and Technology,2007,27(5):418−421 doi: 10.3969/j.issn.1672-7126.2007.05.012
|
[11] |
Barriga J. Tribological performance of titanium doped and pure DLC coatings combined with a synthetic bio-lubricant[J]. Wear,2006,261:9−14 doi: 10.1016/j.wear.2005.09.004
|
[12] |
Kalin M, Roman E, Obolt L, et al. Metal-doped (Ti, WC) diamond-like-carbon coatings: Reactions with extreme-pressure oil additives under tribological and static conditions[J]. Thin Solid Films,2010,518:4336−4344 doi: 10.1016/j.tsf.2010.02.066
|
[13] |
Yao S H, Su Y L, Lai Y C. Antibacterial and tribological performance of carbonitride coatings doped with W, Ti, Zr, or Cr deposited on AISI 316L stainless steel[J]. Materials,2017,10:1189 doi: 10.3390/ma10101189
|
[14] |
Zahid R, Masjuki H H, Varman M, et al. Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: a review[J]. Tribology Letters,2015,58:32 doi: 10.1007/s11249-015-0506-5
|
[15] |
Zahid R, Hassan M B H, Varman M, et al. A review on effects of lubricant formulations on tribological performance and boundary lubrication mechanisms of non-doped DLC/DLC contacts[J]. Critical Reviews in Solid State & Materials Sciences, 2017, 1-28
|
[16] |
Antunes R A, Lima N B D, Rizzutto M D A, et al. Surface interactions of a W-DLC-coated biomedical AISI 316L stainless steel in physiological solution[J]. Journal of Materials Science Materials in Medicine,2013,24:863−876 doi: 10.1007/s10856-013-4871-z
|
[17] |
王翔, 代明江, 戴达煌, 等. WC/DLC纳米多层膜微观结构研究[J]. 真空科学与技术学报, 2013, 41−44(in Chinese)
Wang X, Dai M, Dai D, et al. Study on microstructure of WC/DLC nano multilayers[J]Journal of Vacuum Science and Technology, 2013, 33(1): 41−44
|
[18] |
Guo T, Kong C, Li X, et al. Microstructure and mechanical properties of Ti/Al co-doped DLC films: Dependence on sputtering current, source gas, and substrate bias[J]. Applied Surface Science,2017,410:51−59 doi: 10.1016/j.apsusc.2017.02.254
|
[19] |
Bobzin K, Brögelmann T, Stahl K, et al. Friction reduction of highly-loaded rolling-sliding contacts by surface modifications under elasto-hydrodynamic lubrication[J]. Wear,2015,328−329:217−228 doi: 10.1016/j.wear.2015.02.033
|
[20] |
Mistry K K, Morina A, Neville A. A tribochemical evaluation of a WC–DLC coating in EP lubrication conditions[J]. Wear,2011,271:1739−1744 doi: 10.1016/j.wear.2011.01.071
|
[21] |
Nemati N, Penkov O V, Kim D E. Superior surface protection governed by optimized interface characteristics in WC/DLC multilayer coating[J]. Surface and Coatings Technology,2020,385:125446 doi: 10.1016/j.surfcoat.2020.125446
|
[22] |
Dai W, Kwon S H, Wang Q, et al. Influence of frequency and C2H2 flow on growth properties of diamond-like carbon coatings with AlCrSi co-doping deposited using a reactive high power impulse magnetron sputtering[J]. Thin Solid Films,2018,647:26−32 doi: 10.1016/j.tsf.2017.12.016
|
[23] |
Tillmann W, Ulitzka H, Lopes Dias N F, et al. Effects of acetylene flow rate and bias voltage on the structural and tribo-mechanical properties of sputtered a-C: H films[J]. Thin Solid Films,2020,693:137691 doi: 10.1016/j.tsf.2019.137691
|
[24] |
Fu Z Q, Wang C B, Zhang W, et al. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions[J]. Materials & Design,2013,51:775−779
|
[25] |
Huang K, Li H, Luo Y, et al. An effort towards hard and tough coatings by cathodic arc deposition of Zr-Cr-O coating system[J]. Surface and Coatings Technology,2020,400:126177 doi: 10.1016/j.surfcoat.2020.126177
|