[1] Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches[J]. Plasma Sources Science and Technology,2016,25(3):033002 doi: 10.1088/0963-0252/25/3/033002
[2] Potrivitu G C, Sun Y F, Rohaizat M W A B, et al. A review of low-power electric propulsion research at the space propulsion Centre Singapore[J]. Aerospace,2020,7(6):67 doi: 10.3390/aerospace7060067
[3] Levchenko I, Bazaka K, Ding Y J, et al. Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers[J]. Applied Physics Reviews,2018,5(1):011104 doi: 10.1063/1.5007734
[4] Lev D, Myers R M, Lemmer K M, et al. The technological and commercial expansion of electric propulsion[J]. Acta Astronautica,2019,159:213−227 doi: 10.1016/j.actaastro.2019.03.058
[5] Hara K. An overview of discharge plasma modeling for Hall effect thrusters[J]. Plasma Sources Science and Technology,2019,28(4):044001 doi: 10.1088/1361-6595/ab0f70
[6] Raitses Y, Fisch N J. Parametric investigations of a nonconventional Hall thruster[J]. Physics of Plasmas,2001,8(5):2579−2586 doi: 10.1063/1.1355318
[7] Smirnov A, Raitses Y, Fisch N J. Parametric investigations of miniaturized cylindrical and annular hall thrusters[C]//27th International Electric Propulsion Conference, Pasadena: Princeton University, 2001
[8] Smirnov A, Raitses Y, Fisch N J. The effect of magnetic field on the performance of low-power cylindrical hall thrusters[C]//29th International Electric Propulsion Conference, Princeton: Princeton University, 2005
[9] Seo M, Lee J, Seon J, et al. Radial scale effect on the performance of low-power cylindrical Hall plasma thrusters[J]. Applied Physics Letters,2013,103(13):133501 doi: 10.1063/1.4820774
[10] 张帆, 李平川, 张正浩, 等. 基于霍尔离子源的小型化电推力器仿真设计[J]. 真空科学与技术学报,2021,41(10):993−1000(in chinese) Zhang F, Li P C, Zhang Z H, et al. Simulation design of miniaturized electric thruster based on Hall ion source[J]. Chinese Journal of Vacuum Science and Technology,2021,41(10):993−1000
[11] 赵杰, 唐德礼, 李平川, 等. 电磁场对阳极层霍尔推力器电离效率的影响[J]. 真空科学与技术学报,2019,39(7):583−587(in chinese) Zhao J, Tang D L, Li P C, et al. Effect of electromagnetic field on ionization efficiency of anode layer Hall thruster: a simulation study[J]. Chinese Journal of Vacuum Science and Technology,2019,39(7):583−587
[12] 李平川, 唐德礼, 赵杰, 等. 空心内磁极圆柱形阳极层霍尔推进器溅射仿真[J]. 真空科学与技术学报,2018,38(10):875−882(in chinese) Li P C, Tang D L, Zhao J, et al. Sputtering of hollow inner magnetic pole of cylindrical anode layer Hall thruster: a simulation study[J]. Chinese Journal of Vacuum Science and Technology,2018,38(10):875−882
[13] 李平川, 许丽, 赵杰, 等. 微型化阳极层推力器数值模拟与性能实验[J]. 真空,2023,60(4):36−41(in chinese) Li P C, Xu L, Zhao J, et al. Numerical simulation and experimental research on miniaturized anode layer thruster[J]. Vacuum,2023,60(4):36−41
[14] 赵杰, 唐德礼, 程昌明, 等. 低功率圆柱形阳极层离子源的性能研究[J]. 核聚变与等离子体物理,2009,29(1):92−96(in chinese) Zhao J, Tang D L, Cheng C M, et al. Characteristics of the low power cylindrical anode layer ion source[J]. Nuclear Fusion and Plasma Physics,2009,29(1):92−96
[15] Goebel D M, Katz I. Fundamentals of electric propulsion: ion and Hall thrusters[M]. Hoboken: John Wiley & Sons, Inc. , 2008
[16] Lee D, Doh G, Kim H, et al. Distinct discharge modes in micro Hall thruster plasmas[J]. Plasma Sources Science and Technology,2021,30(3):035004 doi: 10.1088/1361-6595/abdf19