[1] |
Han S L, Song Q Y, Cui S. Research and development of Mo-Cu alloy[J]. Powder Metallurgy Industry,2007,17(05):40−45
|
[2] |
Ji Xinpeng, Cao Weicheng, Bu Chunyang, et al. A new route for preparing Mo-10 wt.% Cu composite compacts[J]. International Journal of Refractory Metals & Hard Materials,2019,81:196−205
|
[3] |
Fan Jianlian, Chen Yubo, Liu Tao, et al. Sintering behavior of nanocrystalline Mo-Cu composite powders[J]. Rare Metal Materials & Engineering,2009,38(10):1693−1697
|
[4] |
Yao Jiantao, Li Chanjiu, Li Yi, et al. Relationships between the properties and microstructure of Mo–Cu composites prepared by infiltrating copper into flame-sprayed porous Mo skeleton[J]. Materials & Design,2015,88(09):774−780
|
[5] |
Sang O C, Klein D, Liao Haolin, et al. Temperature dependence of microstructure and hardness of vacuum plasma sprayed Cu–Mo composite coatings[J]. Surface & Coatings Technology,2006,200(20−21):5682−5686
|
[6] |
Kumar A, Jayasankar K, Debata M, et al. Mechanical alloying and properties of immiscible Cu-20 wt.% Mo alloy[J]. Journal of Alloys & Compounds,2015,647:1040−1047
|
[7] |
Bennett L H, Giessen B C, Massalski T B. Binary alloy phase diagrams[J]. American: ASM international, 1984,Vol.2
|
[8] |
Zhao B, Li D M, Zeng F, et al. Ion beam induced formation of metastable composite phases in Cu-Mo system during ion beam assisted deposition[J]. Applied Surface Science,2003,207(14):334−340
|
[9] |
Popoola A P I, Pityana S L, Popoola O M. Laser deposition of (Cu + Mo) alloying reinforcements on Al1200 substrate for corrosion improvement[J]. International Journal of Electrochemical Science,2011,6(10):5038−5051 doi: 10.1016/S1452-3981(23)18387-8
|
[10] |
Grechanyuk N I, Konoya V P, Grechanyuk V G, et al. Properties of Cu-Mo materials produced by physical vapor deposition for electrical contacts[J]. Powder Metallurgy and Metal Ceramics,2021,60(3/4):183−190
|
[11] |
Kecskes L J, Trexler M D, Klotz B R, et al. Dowding, densification and structural change of mechanically alloyed W–Cu composites[J]. Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2001,32A(11):2885−2893
|
[12] |
Proskurovsky D I, Rotshtein V P, Ozur G E, et al. Pulsed electron-beam technology for surface modification of metallic materials[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 16(4): 2480−2488
|
[13] |
Zou Jianxin, Grosdidier T D, Zhang Kemin, et al. Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel[J]. Acta Mater,2006,54(20):5409−5419 doi: 10.1016/j.actamat.2006.05.053
|
[14] |
Grosdidier T, Zou J X, Stein N, et al. Texture modification, grain refinement and improved hardness/corrosion balance of a FeAl alloy by pulsed electron beam surface treatment in the "heating mode"[J]. Scripta Materialia,2008,58(12):1058−1061 doi: 10.1016/j.scriptamat.2008.01.052
|
[15] |
Cai Jie, Guan Qingfeng, Hou xiuli, et al. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam[J]. Applied Surface Science,2014,317(30):360−369
|
[16] |
Lv Peng, Sun Xiao, Cai Jie, et al. Microstructure and high temperature oxidation resistance of nickel base alloy GH4169 irradiated by high current pulsed electron beam[J]. Surface & Coatings Technology,2017,309(20):401−409
|
[17] |
Zhang Kemin, Ma Jinxin, Zou Jianxin, et al. Surface microstructure and property modifications in a duplex stainless steel induced by high current pulsed electron beam treatments[J]. Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2017,707(15):178−183
|
[18] |
Zhang Conglin, Cai Jie, Lv Peng, et al. Surface microstructure and properties of Cu-C powder metallurgical alloy induced by high-current pulsed electron beam[J]. Journal of Alloys & Compounds,2016,697(15):96−103
|
[19] |
Zhang Conglin, Lv Peng, Cai Jie, et al. The microstructure and properties of tungsten alloying layer on copper by high-current pulse electron beam[J]. Applied Surface Science,2017,422(15):582−590
|
[20] |
Xia Han, Liu Heyao, Zhang Conglin, et al. The microstructure and mechanical properties of Pb alloying layer on Al using surface alloying by high-current pulsed electron beam[J]. Materials Research Express, 2017, 4(11):116523
|
[21] |
Zhang Conglin, Tian Nana, Li Lei, et al. The effect of high-current pulsed electron beam on phase formation and surface properties of chromium/copper system[J]. Vacuum,2020,174:109222 doi: 10.1016/j.vacuum.2020.109222
|
[22] |
吕继可. 强流脉冲电子束处理对铜及其合金表面微观组织及性能影响研究[D]. 沈阳: 东北大学, 2014(in chinese)
Lv Jike. Study on surface microstructure and properties of copper and copper alloy after high current pulsed electron beam treatment[D]. Shenyang: Northeastern University, 2014
|
[23] |
郭中正, 孙勇, 段林昆, 等. 溅射沉积Cu-W合金薄膜的结构及力学性能[J]. 稀有金属,2010,34(01):38−43(in chinese)
Guo Zhengzhong, Sun Yong, Duan Linkun, et al. Structure and mechanical properties of Cu-W Alloy thin films deposited by sputtering[J]. Chinese Journal of Rare Metals,2010,34(01):38−43
|
[24] |
汪峰涛. 新型钨铜复合材料的设计、制备与性能研究[D]. 合肥: 合肥工业大学, 2009(in chinese)
Wang Fengtao. Design、preparation and properties of new style tungsten copper composites[D]. Hefei: Hefei University of Technology, 2009
|
[25] |
田爽, 田娜娜, 张从林, 等. 脉冲电子束作用下Cu-W互不固溶体系固溶拓展研究[J]. 核技术,2022,45(12):49−56(in chinese)
Tian Shuang, Tian Nana, Zhang Conglin, et al. Study on solution expansion of the Cu-W immiscible alloy system by pulsed electron beam[J]. nuclear technology,2022,45(12):49−56
|