[1] |
Yu Z L, Xin S, You Y, et al. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage[J]. Journal of the American Chemical Society,2016,138(45):14915−14922 doi: 10.1021/jacs.6b06673
|
[2] |
Wang H Q, Pan Q C, Wu Q, et al. Ultrasmall MoS2 embedded in carbon nanosheets-coated Sn/SnO x as anode material for high-rate and long life Li-ion batteries[J]. Journal of Materials Chemistry A,2017,5(9):4576−4582 doi: 10.1039/C6TA10932B
|
[3] |
Huang Y, Ding S Q, Xu S J, et al. Binder-free SnS2 sheet array with high sulfur vacancy concentration for enhanced lithium storage performance[J]. Electrochimica Acta,2022,409:139979 doi: 10.1016/j.electacta.2022.139979
|
[4] |
Ma M Z, Yao Y, Wu Y, et al. Progress and prospects of transition metal sulfides for sodium storage[J]. Advanced Fiber Materials,2020,2(6):314−337 doi: 10.1007/s42765-020-00052-w
|
[5] |
Schorr B N B, Kolesnichenko I V, Merrill L C, et al. Stable cycling of lithium batteries utilizing iron disulfide nanoparticles[J]. ACS Applied Nano Materials,2021,4(11):11636−11643 doi: 10.1021/acsanm.1c02178
|
[6] |
Jin R C, Jiang H, Wang Q Y, et al. Sb nanoparticles anchored on nitrogen-doped amorphous carbon-coated ultrathin CoS x nanosheets for excellent performance in lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(51):44494−44502
|
[7] |
Mahmood N, Zhang C Z, Hou Y L. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries[J]. Small,2013,9(8):1321−1328 doi: 10.1002/smll.201203032
|
[8] |
Zhang F F, Wang C L, Huang G, et al. FeS2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries[J]. Journal of Power Sources,2016,328:56−64 doi: 10.1016/j.jpowsour.2016.07.117
|
[9] |
Hu X, Li Y, Zeng G, et al. Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage[J]. ACS Nano,2018,12(2):1592−1602 doi: 10.1021/acsnano.7b08161
|
[10] |
Wu H, Xia G L, Yu X B. Recent progress on nanostructured iron-based anodes beyond metal-organic frameworks for sodium-ion batteries[J]. EnergyChem,2023,5(1):100095 doi: 10.1016/j.enchem.2022.100095
|
[11] |
An C S, Yuan Y F, Zhang B, et al. Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage[J]. Advanced Energy Materials,2019,9(18):1900356 doi: 10.1002/aenm.201900356
|
[12] |
Fang G Z, Wang Q C, Zhou J, et al. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction[J]. ACS Nano,2019,13(5):5635−5645 doi: 10.1021/acsnano.9b00816
|
[13] |
Chu J H, Han K, Yu Q Y, et al. Schottky junction and multiheterostructure synergistically enhance rate performance and cycling stability[J]. Chemical Engineering Journal,2022,430:132994 doi: 10.1016/j.cej.2021.132994
|
[14] |
Ye B Q, Xu L, Wu W B, et al. Construction of hierarchical SnO2@NC@MoS2/C nanotubes for ultrastable lithium- and sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2022,10(10):3166−3179
|
[15] |
Lin Y M, Guo X D, Hu M J, et al. A MoS2@SnS heterostructure for sodium-ion storage with enhanced kinetics[J]. Nanoscale,2020,12(27):14689−14698 doi: 10.1039/D0NR02604B
|
[16] |
Yang F P, Feng X F, Glans P A, et al. MoS2 for beyond lithium-ion batteries[J]. APL Materials,2021,9(5):050903 doi: 10.1063/5.0050118
|
[17] |
Zhang X D, Liu K L, Zhang S J, et al. Enabling remarkable cycling performance of high-loading MoS2@Graphene anode for sodium ion batteries with tunable cut-off voltage[J]. Journal of Power Sources,2020,458:228040 doi: 10.1016/j.jpowsour.2020.228040
|
[18] |
Saikia D, Deka J R, Lin C W, et al. Ordered mesoporous carbon with tubular framework supported SnO2 nanoparticles intertwined in MoS2 nanosheets as an anode for advanced lithium-ion batteries with outstanding performances[J]. Electrochimica Acta,2021,380:138195 doi: 10.1016/j.electacta.2021.138195
|
[19] |
Jiao Y C, Mukhopadhyay A, Ma Y, et al. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries[J]. Advanced Energy Materials,2018,8(15):1702779 doi: 10.1002/aenm.201702779
|
[20] |
Ye B Q, Xu L, Wu W B, et al. Encapsulation of 2D MoS2 nanosheets into 1D carbon nanobelts as anodes with enhanced lithium/sodium storage properties[J]. Journal of Materials Chemistry C,2022,10(9):3329−3342 doi: 10.1039/D1TC05635B
|
[21] |
Zhen M M, Wang J, Guo S Q, et al. Vertically aligned nanosheets with MoS2/N-doped-carbon interfaces enhance lithium-ion storage[J]. Applied Surface Science,2019,487:285−294 doi: 10.1016/j.apsusc.2019.05.110
|
[22] |
Ke G X, Chen H H, He J, et al. Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries[J]. Chemical Engineering Journal,2021,403:126251 doi: 10.1016/j.cej.2020.126251
|
[23] |
Sun H H, Wang J G, Zhang X Z, et al. Nanoconfined construction of MoS2@C/MoS2 core–sheath nanowires for superior rate and durable Li-ion energy storage[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):5346−5354
|
[24] |
Zhang X E, Chen X, Ren H J, et al. Bowl-like C@MoS2 nanocomposites as anode materials for lithium-ion batteries: enhanced stress buffering and charge/mass transfer[J]. ACS Sustainable Chemistry & Engineering,2020,8(27):10065−10072
|
[25] |
Zhao G, Cheng Y L, Sun P X, et al. Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors[J]. Electrochimica Acta,2020,331:135262 doi: 10.1016/j.electacta.2019.135262
|
[26] |
Wu C H, Ou J Z, He F Y, et al. Three-dimensional MoS2/Carbon sandwiched architecture for boosted lithium storage capability[J]. Nano Energy,2019,65:104061 doi: 10.1016/j.nanoen.2019.104061
|
[27] |
Pan Q C, Zheng F H, Ou X, et al. MoS2 encapsulated SnO2-SnS/C nanosheets as a high performance anode material for lithium ion batteries[J]. Chemical Engineering Journal,2017,316:393−400 doi: 10.1016/j.cej.2017.01.111
|
[28] |
Pan K, Sun Y N, He X C, et al. Synergy ascension of SnS/MoS2 binary metal sulfides on initial coulombic efficiency and stable capacity for lithium storage[J]. RSC Advances,2021,11(28):17332−17339 doi: 10.1039/D1RA01267C
|
[29] |
Veerasubramani G K, Park M S, Woo H S, et al. Closely coupled binary metal sulfide nanosheets shielded molybdenum sulfide nanorod hierarchical structure via eco-benign surface exfoliation strategy towards efficient lithium and sodium-ion batteries[J]. Energy Storage Materials,2021,38:344−353 doi: 10.1016/j.ensm.2021.03.022
|
[30] |
Ru J J, He T, Chen B J, et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries[J]. Angewandte Chemie International Edition,2020,59(34):14621−14627 doi: 10.1002/anie.202005840
|