[1] |
Zheludev N I. The road ahead for metamaterials[J]. Science,2010,328(5978):582−583 doi: 10.1126/science.1186756
|
[2] |
Zhang J, Shao L D, Li Z F, et al. Graphene-based optically transparent metasurface capable of dual-polarized modulation for electromagnetic stealth[J]. ACS Applied Materials & Interfaces,2022,14(27):31075−31084
|
[3] |
He T, Liu T, Xiao S Y, et al. Perfect anomalous reflectors at optical frequencies[J]. Science Advances,2022,8(9):eabk3381 doi: 10.1126/sciadv.abk3381
|
[4] |
Li Y, Lin J, Guo H J, et al. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption[J]. Advanced Optical Materials,2020,8(6):1901548 doi: 10.1002/adom.201901548
|
[5] |
Ding F, Yang Y Q, Bozhevolnyi S I. Dynamic metasurfaces using phase-change chalcogenides[J]. Advanced Optical Materials,2019,7(14):1801709 doi: 10.1002/adom.201801709
|
[6] |
Kruk S, Hopkins B, Kravchenko I I, et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J]. Apl Photonics,2016,1(3):030801 doi: 10.1063/1.4949007
|
[7] |
Li Z L, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano,2017,11(9):9382−9389 doi: 10.1021/acsnano.7b04868
|
[8] |
Zhang Y L, Cheng Y, Chen M, et al. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface[J]. Applied Physics Letters,2020,117(2):021105 doi: 10.1063/5.0014987
|
[9] |
Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electronic Advances,2021,4(1):200008 doi: 10.29026/oea.2021.200008
|
[10] |
Yang F, Lin H I, Shalaginov M Y, et al. Reconfigurable parfocal zoom metalens[J]. Advanced Optical Materials,2022,10(17):2200721 doi: 10.1002/adom.202200721
|
[11] |
Wan W P, Yang W H, Ye S, et al. Tunable full-color vectorial meta-holography[J]. Advanced Optical Materials,2022,10(22):2201478 doi: 10.1002/adom.202201478
|
[12] |
Fu R, Li Z L, Zheng G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics,2021,14(4):886−899 doi: 10.37188/CO.2021-0017
|
[13] |
Du K, Barkaoui H, Zhang X D, et al. Optical metasurfaces towards multifunctionality and tunability[J]. Nanophotonics,2022,11(9):1761−1781 doi: 10.1515/nanoph-2021-0684
|
[14] |
Michel A K U, Meyer S, Essing N, et al. The potential of combining thermal scanning probes and phase-change materials for tunable metasurfaces[J]. Advanced Optical Materials,2020,9(2):2001243
|
[15] |
Landau L. The theory of phase transitions[J]. Nature,1936,138(3498):840−841 doi: 10.1038/138840a0
|
[16] |
Wang Y F, Landreman P, Schoen D, et al. Electrical tuning of phase-change antennas and metasurfaces[J]. Nature Nanotechnology,2021,16(6):667−672 doi: 10.1038/s41565-021-00882-8
|
[17] |
Liu L, Kang L, Mayer T S, et al. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nature Communications,2016,7:13236 doi: 10.1038/ncomms13236
|
[18] |
Rudé M, Simpson R E, Quidant R, et al. Active control of surface Plasmon waveguides with a phase change material[J]. ACS Photonics,2015,2(6):669−674 doi: 10.1021/acsphotonics.5b00050
|
[19] |
Lu L, Z G Dong, F Tijiptoharsono, et al. Reversible tuning of mie resonances in the visible spectrum[J]. Acs Nano,2021,15(12):19722−19732. doi: 10.1021/acsnano.1c07114
|
[20] |
Zhang Z Y, Shi H Y, Wang L Y, et al. Recent advances in reconfigurable metasurfaces: principle and applications[J]. Nanomaterials,2023,13(3):534 doi: 10.3390/nano13030534
|
[21] |
Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters,2016,16(4):2818−2823 doi: 10.1021/acs.nanolett.6b00618
|
[22] |
Xiao S M, Chettiar U K, Kildishev A V, et al. Tunable magnetic response of metamaterials[J]. Applied Physics Letters,2009,95(3):033115 doi: 10.1063/1.3182857
|
[23] |
Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics,2018,5(5):1742−1748 doi: 10.1021/acsphotonics.7b01343
|
[24] |
Park J, Kang J H, Liu X G, et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers[J]. Scientific Reports,2015,5:15754 doi: 10.1038/srep15754
|
[25] |
Shirmanesh G K, Sokhoyan R, Pala R A, et al. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability[J]. Nano Letters,2018,18(5):2957−2963 doi: 10.1021/acs.nanolett.8b00351
|
[26] |
Shcherbakov M R, Vabishchevich P P, Shorokhov A S, et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures[J]. Nano Letters,2015,15(10):6985−6990 doi: 10.1021/acs.nanolett.5b02989
|
[27] |
Zhou C B, Qu X Y, Xiao S Y, et al. Imaging through a fano-resonant dielectric metasurface governed by quasi--bound states in the continuum[J]. Physical Review Applied, 2020, 14(4): 044009
|
[28] |
Konnikova M R, Khomenko M D, Tverjanovich A S, et al. GeTe2 phase change material for terahertz devices with reconfigurable functionalities using optical activation[J]. ACS Applied Materials & Interfaces,2023,15(7):9638−9648
|
[29] |
康同同. 基于VO2相变薄膜的可重构超表面研究[D]. 成都: 电子科技大学, 2022(in Chinese)
Kang T T. Research on reconfigurable metasurfaces based on VO2 phase change thin films[D]. Chengdu: University of Electronic Science and Technology of China, 2022
|
[30] |
Ruiz De Galarreta C, Sinev I, Alexeev A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces[J]. Optica,2020,7(5):476−484 doi: 10.1364/OPTICA.384138
|
[31] |
张艺琼. 基于相变化材料的可擦写可编程超材料研究[D]. 长沙: 国防科技大学, 2020(in Chinese)
Zhang Y Q. Research on rewritable, programmable metamaterials based on phase change materials[D]. Changsha: National University of Defense Technology, 2020
|
[32] |
Li S Y, Zhou C B, Ban G X, et al. Active all-dielectric bifocal metalens assisted by germanium antimony telluride[J]. Journal of Physics D: Applied Physics,2019,52(9):095106 doi: 10.1088/1361-6463/aaf7f3
|
[33] |
Ding F, Zhong S M, Bozhevolnyi S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Advanced Optical Materials,2018,6(9):1701204 doi: 10.1002/adom.201701204
|
[34] |
Fang B, Feng D T, Chen P, et al. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region[J]. Frontiers of Physics,2022,17(5):53502 doi: 10.1007/s11467-021-1148-8
|
[35] |
Zhu Z H, Evans P G, Haglund Jr R F, et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J]. Nano Letters,2017,17(8):4881−4885 doi: 10.1021/acs.nanolett.7b01767
|
[36] |
史卓琳, 贺景琳, 王金金, 等. 基于相变材料GST的圆二色性可调谐外在手征超表面设计[J]. 光电工程, 2022, 49(10): 220092(in Chinese)
Shi Z L, He J L, Wang J J, et al. Design of tunable circular dichroism extrinsic chiral metasurface based on phase change material GST[J]. Opto-Electronic Engineering, 2022, 49(10): 220092
|
[37] |
Rui G H, Ding C C, Gu B, et al. Symmetric Ge2Sb2Te5 based metamaterial absorber induced dynamic wide-gamut structural color[J]. Journal of Optics,2020,22(8):085003 doi: 10.1088/2040-8986/aba138
|
[38] |
Zhou C B, Li S Y, Fan M H, et al. Optical radiation manipulation of Si-Ge2Sb2Te5 hybrid metasurfaces[J]. Optics Express,2020,28(7):9690−9701 doi: 10.1364/OE.389968
|
[39] |
De Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase-change Metadevices for beam steering in the near infrared[J]. Advanced Functional Materials,2018,28(10):1704993 doi: 10.1002/adfm.201704993
|
[40] |
Qu Y R, Li Q, Cai L, et al. Thermal camouflage based on the phase-changing material GST[J]. Light: Science & Applications, 2018, 7: 26
|
[41] |
Guo P J, Weimer M S, Emery J D, et al. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching[J]. ACS Nano,2017,11(1):693−701 doi: 10.1021/acsnano.6b07042
|
[42] |
Michel A K U, Zalden P, Chigrin D N, et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses[J]. ACS Photonics,2014,1(9):833−839 doi: 10.1021/ph500121d
|
[43] |
Zhang M, Dong P, Wang Y, et al. Tunable terahertz wavefront modulation based on phase change materials embedded in metasurface[J]. Nanomaterials,2022,12(20):3592 doi: 10.3390/nano12203592
|
[44] |
龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器[J]. 物理学报,2021,70(7):074201 (in Chinese) doi: 10.7498/aps.70.20201495
Long J, Li J S. Terahertz phase shifter based on phase change material-metasurface composite structure[J]. Acta Physica Sinica,2021,70(7):074201 doi: 10.7498/aps.70.20201495
|
[45] |
Zhu Y H, Vegesna S, Zhao Y, et al. Tunable dual-band terahertz metamaterial bandpass filters[J]. Optics Letters,2013,38(14):2382−2384 doi: 10.1364/OL.38.002382
|
[46] |
Lv T T, Li Y X, Ma H F, et al. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition[J]. Scientific Reports,2016,6(1):23186 doi: 10.1038/srep23186
|
[47] |
Nouman M T, Hwang J H, Faiyaz M, et al. Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control[J]. Optics Express,2018,26(10):12922−12929 doi: 10.1364/OE.26.012922
|
[48] |
Lv T T, Dong G H, Qin C H, et al. Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO2 phase transition[J]. Optics Express,2021,29(4):5437−5447 doi: 10.1364/OE.418020
|
[49] |
Ahmadivand A, Gerislioglu B, Sinha R, et al. Optical switching using transition from dipolar to charge transfer plasmon modes in Ge2Sb2Te5 bridged metallodielectric Dimers[J]. Scientific Reports,2017,7(1):42807 doi: 10.1038/srep42807
|
[50] |
Ahmadivand A, Gerislioglu B, Pala N. Active control over the interplay between the dark and hidden sides of plasmonics using metallodielectric Au–Ge2Sb2Te5 unit cells[J]. The Journal of Physical Chemistry C,2017,121(36):19966−19974 doi: 10.1021/acs.jpcc.7b05890
|
[51] |
Conrads L, Honné N, Ulm A, et al. Reconfigurable and polarization-dependent grating absorber for large-area emissivity control based on the plasmonic phase-change material In3SbTe2[J]. Advanced Optical Materials,2023,11(8):2202696 doi: 10.1002/adom.202202696
|
[52] |
Fang Z R, Chen R, Tara V, et al. Non-volatile phase-change materials for programmable photonics[J]. Science Bulletin,2023,68(8):783−786 doi: 10.1016/j.scib.2023.03.034
|
[53] |
Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics,2016,10(1):60−65 doi: 10.1038/nphoton.2015.247
|
[54] |
Liu H L, Dong W L, Wang H, et al. Rewritable color nanoprints in antimony trisulfide films[J]. Science Advances, 2020, 6(51): eabb7171
|
[55] |
Wang Q, Maddock J, Rogers E T F, et al. 1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage[J]. Applied Physics Letters,2014,104(12):121105 doi: 10.1063/1.4869575
|
[56] |
Bi C B, Wang L, Li R F, et al. Germanium monotelluride-based solid solutions as whole-visible dielectric-metallic-transition material platforms for programmable metasurfaces[J]. Acta Materialia,2023,250:118863 doi: 10.1016/j.actamat.2023.118863
|
[57] |
Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nature Materials,2007,6(11):824−832 doi: 10.1038/nmat2009
|
[58] |
Wuttig M. Phase-change materials: towards a universal memory?[J]. Nature Materials,2005,4(4):265−266 doi: 10.1038/nmat1359
|
[59] |
Yamada N, Ohno E, Akahira N, et al. High speed overwritable phase change optical disk material[J]. Japanese Journal of Applied Physics,1987,26(S4):61−66 doi: 10.7567/JJAPS.26S4.61
|
[60] |
Gotoh T, Sugawara K, Tanaka K. Minimal phase-change marks produced in amorphous Ge2Sb2Te5 films[J]. Japanese Journal of Applied Physics,2004,43(6B):L818−L821.
|
[61] |
Sugawara K, Gotoh T, Tanaka K. Nanoscale phase change in telluride films induced with scanning tunneling microscopes[J]. Japanese Journal of Applied Physics,2004,43(5B):L676−L679.
|
[62] |
Ríos C, Hosseini P, Taylor R A, et al. Color depth modulation and resolution in phase-change material nanodisplays[J]. Advanced Materials,2016,28(23):4720−4726 doi: 10.1002/adma.201506238
|
[63] |
Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature,2014,511(7508):206−211 doi: 10.1038/nature13487
|
[64] |
Zhang Y F, Fowler C, Liang J H, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology,2021,16(6):661−666 doi: 10.1038/s41565-021-00881-9
|