[1] Sun Q J, Subramanyam G, Dai L M, et al. Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer[J]. Acs Nano,2009,3(3):737−743
[2] Kim J, Shim H J, Yang J W, et al. Ultrathin quantum dot display integrated with wearable electronics[J]. Advanced Materials, 2017, 29(38): 1700217
[3] Sun Y Z, Wang W G, Zhang H, et al. High performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18902-18909
[4] Chen H, He Z Q, Zhang D D, et al. Bright quantum dot light-emitting diodes enabled by imprinted speckle image holography nanostructures[J]. The Journal of Physical Chemistry Letters, 2019, 10(9): 2196-2201
[5] Wu Z H, Liu P, Zhang W D, et al. Development of InP quantum dot-based light-emitting diodes[J]. ACS Energy Letters, 2020, 5(4): 1095-1106
[6] Li X Y, Lin Q L, Song J J, et al. Quantum‐dot light‐emitting diodes for outdoor displays with high stability at high brightness[J]. Advanced Optical Materials, 2019, 8(2): 1901145
[7] Liu B C, Guo Y, Su Q, et al. Cadmium doped zinc sulfide shell as a hole injection springboard for red, green, and blue quantum dot light-emitting diodes[J]. Advanced Science, 2022, 9(15): 2104488
[8] Li B X, Lu M X, Feng J T, et al. Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting[J]. Journal of Materials Chemistry C, 2020, 8(31): 10676-10695
[9] Bae W K, Park Y S, Lim J, et al. Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature Communications, 2013, 4(1): 2661
[10] Liang X Y, Bai S, Wang X, et al. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells[J]. Chemical Society Reviews, 2017, 46(6): 1730−1759
[11] Sun W J, Xie L M, Guo X J, et al. Photocross-Linkable hole transport materials for inkjet-printed high-efficient quantum dot light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 58369−58377
[12] Feng H W, Yu Y C, Tang G, et al. Carrier transport regulation with hole transport trilayer for efficiency enhancement in quantum dot light-emitting devices[J]. Journal of Luminescence, 2021, 231: 117785
[13] Chen F, Liu Z Y, Guan Z Y, et al. Chloride-passivated Mg-Doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes[J]. ACS Photonics, 2018, 5(9): 3704−3711
[14] Huang Q C, Yang Z X, Zhou Y Q, et al. Effective growth strategy of colloidal quantum dots with low defects and high brightness[J]. Optical Materials, 2023, 138: 113628
[15] Torres E T S, Aoki R M, Jesus J P A, et al. Synthesis and characterization of CdS/ZnS heterostructures to improve the optical properties of CdS quantum dots[J]. Journal of Luminescence, 2023, 257: 119706
[16] Mude N N, Khan Y, Thuy T T, et al. Stable ZnS electron transport layer for high-performance inverted cadmium-free quantum dot light-emitting diodes[J]. ACS Appl Mater Interfaces, 2022, 14(50): 55925−55932
[17] Siboni H Z, Sadeghimakki B, Sivoththaman S. Very high brightness quantum dot light-emitting devices via enhanced energy transfer from a phosphorescent sensitizer[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25828−25834
[18] Santos M C D, Algar W R. Quantum dots for förster resonance energy transfer[J]. TrAC Trends in Analytical Chemistry, 2020, 125: 115819
[19] Han Y W, Lee E J, Joo J W, et al. Photon energy transfer by quantum dots in organic–inorganic hybrid solar cells through FRET[J]. Journal of Materials Chemistry A, 2016, 4(27): 10444−10453
[20] Zheng K, Žídek K, Abdellah M, et al. Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation[J]. Journal of the American Chemical Society, 2014, 136(17): 6259−6268
[21] Nguyen D, Gruebele M. Imaging and manipulating energy transfer among quantum dots at individual dot resolution[J]. Acs Nano, 2017, 11(6): 6328−6335