[1] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chemical Reviews, 2016, 116(7): 4558–4596. doi: 10.1021/acs.chemrev.5b00715
[2] MITZI D B, CHONDROUDIS K, KAGAN C R. Organic-inorganic electronics [J]. IBM Journal of Research and Development, 2001, 45(1): 29–45. doi: 10.1147/rd.451.0029
[3] LI W, WANG Z M, DESCHLER F, et al. Chemically diverse and multifunctional hybrid organic-inorganic perovskites [J]. Nature Reviews Materials, 2017, 2(3): 16099. doi: 10.1038/natrevmats.2016.99
[4] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites [J]. Chemical Reviews, 2016, 116(21): 12956–13008. doi: 10.1021/acs.chemrev.6b00136
[5] GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477–485. doi: 10.1007/BF01507527
[6] SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties [J]. Chemical Reviews, 2019, 119(5): 3296–3348. doi: 10.1021/acs.chemrev.8b00644
[7] FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties [J]. Nature Reviews Materials, 2019, 4(3): 169–188. doi: 10.1038/s41578-019-0080-9
[8] CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells [J]. Science, 2017, 358(6364): 739–744. doi: 10.1126/science.aam6323
[9] PETRUS M L, SCHLIPF J, LI C, et al. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells [J]. Advanced Energy Materials, 2017, 7(16): 1700264. doi: 10.1002/aenm.201700264
[10] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245–248. doi: 10.1038/s41586-018-0575-3
[11] WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nature Photonics, 2016, 10(11): 699–704. doi: 10.1038/nphoton.2016.185
[12] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization [J]. Nature Communications, 2015, 6: 7586. doi: 10.1038/ncomms8586
[13] XING J, YAN F, ZHAO Y W, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles [J]. ACS Nano, 2016, 10(7): 6623–6630. doi: 10.1021/acsnano.6b01540
[14] AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics [J]. Advanced Materials, 2017, 29(41): 1605242. doi: 10.1002/adma.201605242
[15] DOU L T, YANG Y M, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nature Communications, 2014, 5: 5404. doi: 10.1038/ncomms6404
[16] ZHOU Y X, HUANG Y Y, XU X L, et al. Nonlinear optical properties of halide perovskites and their applications [J]. Applied Physics Reviews, 2020, 7(4): 041313. doi: 10.1063/5.0025400
[17] PARK N G. Perovskite solar cells: an emerging photovoltaic technology [J]. Materials Today, 2015, 18(2): 65–72. doi: 10.1016/j.mattod.2014.07.007
[18] SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Advanced Materials, 2015, 27(44): 7162–7167. doi: 10.1002/adma.201502567
[19] WANG Y M, LI M T, PEI C Y, et al. Critical current density and vortex phase diagram in the superconductor Sn0.55In0.45Te [J]. Physical Review B, 2022, 106(5): 054506. doi: 10.1103/PhysRevB.106.054506
[20] LIU X Q, LI M T, ZHANG Q, et al. Pressure engineering promising transparent oxides with large conductivity enhancement and strong thermal stability [J]. Advanced Science, 2022, 9(31): 2202973. doi: 10.1002/advs.202202973
[21] LI M T, ZHANG D J, HAN J, et al. Pressure-tuning structural and electronic transitions in semimetal CoSb [J]. Physical Review B, 2021, 104(5): 054511. doi: 10.1103/PhysRevB.104.054511
[22] LI N N, FAN F R, SUN F, et al. Pressure-enhanced interplay between lattice, spin, and charge in the mixed perovskite La2FeMnO6 [J]. Physical Review B, 2019, 99(19): 195115. doi: 10.1103/PhysRevB.99.195115
[23] LIU X Q, JIANG P, WANG Y M, et al. Tc up to 23.6 K and robust superconductivity in the transition metal δ-Ti phase at megabar pressure [J]. Physical Review B, 2022, 105(22): 224511. doi: 10.1103/PhysRevB.105.224511
[24] YAN L M, DING C, LI M T, et al. Modulating charge-density wave order and superconductivity from two alternative stacked monolayers in a bulk 4Hb-TaSe2 heterostructure via pressure [J]. Nano Letters, 2023, 23(6): 2121–2128. doi: 10.1021/acs.nanolett.2c04385
[25] QU J, YAN L M, LIU H, et al. Pressure-induced structural phase transition in corundum-related class Cu3TeO6 [J]. High Pressure Research, 2021, 41(3): 318–327. doi: 10.1080/08957959.2021.1975699
[26] LI N N, ZHANG Q, WANG Y G, et al. Perspective on the pressure-driven evolution of the lattice and electronic structure in perovskite and double perovskite [J]. Applied Physics Letters, 2020, 117(8): 080502. doi: 10.1063/5.0014947
[27] LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization [J]. Advanced Materials, 2016, 28(39): 8663–8668. doi: 10.1002/adma.201600771
[28] LIN J, CHEN H, GAO Y, et al. Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23404–23409.
[29] ASFIA M B, JAMAN S, RASHID M A. Pressure induced band gap shifting from ultra-violet to visible region of RbSrCl3 perovskite [J]. Materials Research Express, 2022, 9(9): 095902. doi: 10.1088/2053-1591/ac8f88
[30] LÜ X J, STOUMPOS C, HU Q Y, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites [J]. National Science Review, 2021, 8(9): 288. doi: 10.1093/nsr/nwaa288
[31] JAFFE A, LIN Y, MAO W L, et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4330–4333. doi: 10.1021/jacs.7b01162
[32] TANG L C, HUANG J Y, CHANG C S, et al. New infrared nonlinear optical crystal CsGeBr3: synthesis, structure and powder second-harmonic generation properties [J]. Journal of Physics: Condensed Matter, 2005, 17(46): 7275–7286. doi: 10.1088/0953-8984/17/46/011
[33] HUANG L Y, LAMBRECHT W R L. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si [J]. Physical Review B, 2016, 93(19): 195211. doi: 10.1103/PhysRevB.93.195211
[34] ZHANG Q Q, MUSHAHALI H, DUAN H M, et al. The linear and nonlinear optical response of CsGeX3 (X = Cl, Br, and I): the finite field and first-principles investigation [J]. Optik, 2019, 179: 89–98. doi: 10.1016/j.ijleo.2018.10.159
[35] LIN Z G, TANG L C, CHOU C P. Study on mid-IR NLO crystals CsGe(Br xCl1– x)3 [J]. Optical Materials, 2008, 31(1): 28–34. doi: 10.1016/j.optmat.2008.01.004
[36] LIN Z G, TANG L C, CHOU C P. Characterization and properties of novel infrared nonlinear optical crystal CsGe(Br xCl1– x)3 [J]. Inorganic Chemistry, 2008, 47(7): 2362–2367. doi: 10.1021/ic7011777
[37] HUANG L Y, LAMBRECHT W R L. Vibrational spectra and nonlinear optical coefficients of rhombohedral CsGeX3 halide compounds with X = I, Br, Cl [J]. Physical Review B, 2016, 94(11): 115202. doi: 10.1103/PhysRevB.94.115202
[38] SEO D K, GUPTA N, WHANGBO M H, et al. Pressure-induced changes in the structure and band gap of CsGeX3 (X = Cl, Br) studied by electronic band structure calculations [J]. Inorganic Chemistry, 1998, 37(3): 407–410. doi: 10.1021/ic970659e
[39] SCHWARZ U, WAGNER F, SYASSEN K, et al. Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3 [J]. Physical Review B, 1996, 53(19): 12545–12548. doi: 10.1103/PhysRevB.53.12545
[40] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
[41] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
[42] LARSON A C, VON DREELE R B. General structure analysis system (GSAS): No. LAUR 86–748 [R]. Los Alamos: Los Alamos National Laboratory, 2004.
[43] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
[44] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
[45] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169