[1] |
Yamamoto S. Fundamental physics of vacuum electron sources[J]. Reports on Progress in Physics,2006,69(1):181−232 doi: 10.1088/0034-4885/69/1/R04
|
[2] |
Schagen P. Alternatives to thermionic emission[J]. British Journal of Applied Physics,1965,16(3):293−303 doi: 10.1088/0508-3443/16/3/202
|
[3] |
Spindt C A. A thin-film field-emission cathode[J]. Journal of Applied Physics,1968,39(7):3504−3505 doi: 10.1063/1.1656810
|
[4] |
Fomani A A, Guerrera S A, Velasquez-Garcia L F, et al. Toward amp-level field emission with large-area arrays of Pt-coated self-aligned gated nanoscale tips[J]. IEEE Transactions on Electron Devices,2014,61(7):2538−2546 doi: 10.1109/TED.2014.2322518
|
[5] |
Huang J, Huang Y, Zeng M, et al. Fabrication of spindt-type nanometer-sized chromium tips for application as field-electron emitters by releasing the stress of the deposited thin film[J]. ACS Applied Nano Materials,2023,6(1):351−357 doi: 10.1021/acsanm.2c04457
|
[6] |
Schwoebel P R, Spindt C A, Holland C E. High current, high current density field emitter array cathodes[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(2): 691−693
|
[7] |
Hsu D S Y, Shaw J. Integrally gated carbon nanotube-on-post field emitter arrays[J]. Applied Physics Letters,2002,80(1):118−120 doi: 10.1063/1.1428775
|
[8] |
Zhang H, Tang J, Yuan J, et al. An ultrabright and monochromatic electron point source made of a LaB6 nanowire[J]. Nature Nanotechnology,2016,11(3):273−279 doi: 10.1038/nnano.2015.276
|
[9] |
Chen Y, Deng S, Xu N, et al. Recent progress on ZnO nanowires cold cathode and its applications[J]. Nanomaterials,2021,11(8):2150 doi: 10.3390/nano11082150
|
[10] |
Wang Y, Wu G, Xiang L, et al. Single-walled carbon nanotube thermionic electron emitters with dense, efficient and reproducible electron emission[J]. Nanoscale,2017,9(45):17814−17820 doi: 10.1039/C7NR05388F
|
[11] |
Wang Y, Fang L, Xiang L, et al. On-chip thermionic electron emitter arrays based on horizontally aligned single-walled carbon nanotubes[J]. IEEE Transactions on Electron Devices,2019,66(2):1069−1074 doi: 10.1109/TED.2018.2887227
|
[12] |
Mead C A. Operation of tunnel-emission devices[J]. Journal of Applied Physics,1961,32(4):646−652 doi: 10.1063/1.1736064
|
[13] |
Suzuki M, Sagawa M, Kusunoki T, et al. Enhancing electron-emission efficiency of MIM tunneling cathodes by reducing insulator trap density[J]. IEEE Transactions on Electron Devices,2012,59(8):2256−2262 doi: 10.1109/TED.2012.2197625
|
[14] |
Murakami K, Miyaji J, Furuya R, et al. High-performance planar-type electron source based on a graphene-oxide-semiconductor structure[J]. Applied Physics Letters,2019,114(21):213501 doi: 10.1063/1.5091585
|
[15] |
Kohn E S. Cold-Cathode electron emission from silicon[J]. Applied Physics Letters,1971,18(7):272−273 doi: 10.1063/1.1653659
|
[16] |
Sukegawa T, Kan H, Nakamura T, et al. GaP negative-electron-affinity cold cathodes[J]. Journal of Applied Physics,1979,50(5):3780−3782 doi: 10.1063/1.326295
|
[17] |
Takeuchi D, Makino T, Kato H, et al. Electron emission from a diamond (111) p–i–n+ junction diode with negative electron affinity during room temperature operation[J]. Applied Physics Express,2010,3(4):041301 doi: 10.1143/APEX.3.041301
|
[18] |
Wu G, Li Z, Tang Z, et al. Silicon oxide electron-emitting nanodiodes[J]. Advanced Electronic Materials,2018,4(8):1800136 doi: 10.1002/aelm.201800136
|
[19] |
Li Z, Wei X. A high-efficiency electron-emitting diode based on horizontal tunneling junction[J]. IEEE Electron Device Letters,2019,40(7):1201−1204 doi: 10.1109/LED.2019.2918554
|
[20] |
Zhan F, Li Z, Wang Y, et al. A new emission mechanism for island-metal-film-based electron sources[J]. IEEE Transactions on Electron Devices,2020,67(11):5119−5124 doi: 10.1109/TED.2020.3020289
|
[21] |
Li Z, Zhang Z, Tian J, et al. Efficient and dense electron emission from a SiO2 Tunneling diode with low poisoning sensitivity[J]. Nano Letters,2022,22(3):1270−1277 doi: 10.1021/acs.nanolett.1c04475
|
[22] |
Yao J, Zhong L, Natelson D, et al. Silicon Oxide: A Non-innocent Surface for Molecular Electronics and Nanoelectronics Studies[J]. Journal of the American Chemical Society,2011,133(4):941−948
|
[23] |
Yao J, Zhong L, Natelson D, et al. Intrinsic resistive switching and memory effects in silicon oxide[J]. Applied Physics A,2011,102(4):835−839 doi: 10.1007/s00339-011-6267-6
|
[24] |
Yao J, Lin J, Dai Y, et al. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene[J]. Nature Communications,2012,3(1):1101 doi: 10.1038/ncomms2110
|
[25] |
Yao J, Zhong L, Zhang Z, et al. Resistive switching in nanogap systems on SiO2 substrates[J]. Small,2009,5(24):2910−2915 doi: 10.1002/smll.200901100
|
[26] |
Yao J, Sun Z, Zhong L, et al. Resistive switches and memories from silicon oxide[J]. Nano Letters,2010,10(10):4105−4110 doi: 10.1021/nl102255r
|
[27] |
Yao J, Zhong L, Natelson D, et al. In situ imaging of the conducting filament in a silicon oxide resistive switch[J]. Scientific Reports,2012,2(1):242 doi: 10.1038/srep00242
|
[28] |
Fowler R H, Nordheim L. Electron emission in intense electric fields[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1928,119(781):173−181 doi: 10.1098/rspa.1928.0091
|
[29] |
Jacoboni C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials[J]. Reviews of Modern Physics,1983,55(3):645−705 doi: 10.1103/RevModPhys.55.645
|
[30] |
Kuhr J C, Fitting H J. Monte Carlo simulation of electron emission from solids[J]. Journal of Electron Spectroscopy and Related Phenomena,1999,105(2−3):257−273 doi: 10.1016/S0368-2048(99)00082-1
|
[31] |
Murakami K, Adachi M, Miyaji J, et al. Mechanism of highly efficient electron emission from a graphene/oxide/semiconductor structure[J]. ACS Applied Electronic Materials,2020,2(7):2265−2273 doi: 10.1021/acsaelm.0c00449
|
[32] |
Busta H H. Vacuum microelectronics-1992[J]. Journal of Micromechanics and Microengineering,1992,2(2):43−74 doi: 10.1088/0960-1317/2/2/001
|
[33] |
Busta H H, Pryor R W. Performance of laser ablated, laser annealed BN emitters deposited on polycrystalline diamond[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1998, 16(3): 1207−1210
|
[34] |
Busta H H, Pogemiller J E, Zimmerman B J. Emission characteristics of silicon vacuum triodes with four different gate geometries[J]. IEEE Transactions on Electron Devices,1993,40(8):1530−1536 doi: 10.1109/16.223715
|
[35] |
Jenkins R. A review of thermionic cathodes[J]. Vacuum,1969,19(8):353−359 doi: 10.1016/S0042-207X(69)80077-1
|
[36] |
Gallagher H E. Poisoning of LaB6 Cathodes[J]. Journal of Applied Physics,1969,40(1):44−51 doi: 10.1063/1.1657092
|
[37] |
Gan Z, Huang D, Wang X, et al. Getter free vacuum packaging for MEMS[J]. Sensors and Actuators A: Physical,2009,149(1):159−164 doi: 10.1016/j.sna.2008.10.014
|
[38] |
Nemanič V, Umer M, Zajec B. Pressure determination in small electron tubes[J]. Vacuum,2001,61(2-4):465−470 doi: 10.1016/S0042-207X(01)00286-X
|
[39] |
Bachmann M, Düsberg F, Langer C, et al. Vacuum-sealed field emission electron gun[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2020, 38(2): 023203
|
[40] |
Zhan F, Li Z, Yang W, et al. Pressure sensitivity of electron emission from SiOx tunneling diodes and their outstanding emission performance under rough vacuum[J]. Advanced Electronic Materials,2022,8(9):2200216 doi: 10.1002/aelm.202200216
|
[41] |
Li Z, Wei X. A cascade electron source based on series horizontal tunneling junctions[J]. IEEE Transactions on Electron Devices,2021,68(2):818−821 doi: 10.1109/TED.2020.3044868
|
[42] |
Reimer L. Transmission electron microscopy: Vol. 36[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984
|
[43] |
Yang W, Li Z, Wang Y, et al. High-performance on-chip electron sources based on electroformed silicon oxide[J]. Advanced Electronic Materials,2020,6(7):2000268 doi: 10.1002/aelm.202000268
|
[44] |
Zhan F, Yang W, Li Z, et al. SiOx tunneling diode arrays with uniform electron emission[J]. IEEE Electron Device Letters,2022,43(8):1339−1342 doi: 10.1109/LED.2022.3184948
|
[45] |
Temple D. Recent progress in field emitter array development for high performance applications[J]. Materials Science and Engineering: R: Reports,1999,24(5):185−239 doi: 10.1016/S0927-796X(98)00014-X
|
[46] |
Jousten K, Boineau F, Bundaleski N, et al. A review on hot cathode ionisation gauges with focus on a suitable design for measurement accuracy and stability[J]. Vacuum,2020,179:109545 doi: 10.1016/j.vacuum.2020.109545
|
[47] |
Yu-zhi W. A fundamental theory of high pressure hot cathode ionization gauges[J]. Vacuum,1984,34(8-9):775−778 doi: 10.1016/0042-207X(84)90327-0
|
[48] |
Schulz G J, Phelps A V. Ionization gauges for measuring pressures up to the millimeter range[J]. Review of Scientific Instruments,1957,28(12):1051−1054 doi: 10.1063/1.1715800
|
[49] |
Yang W, Liu W, Wang X, et al. A miniature ionization vacuum sensor with a SiOₓ-based tunneling electron source[J]. IEEE Transactions on Electron Devices,2021,68(10):5127−5132 doi: 10.1109/TED.2021.3102089
|