[1] Dhillon S S, Vitiello M S, Linfield E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D:Applied Physics,2017,50(4):043001 doi: 10.1088/1361-6463/50/4/043001
[2] 刘盛纲. 太赫兹科学技术的新发展[J]. 中国基础科学,2006,8(1):7−12 (in Chinese) doi: 10.3969/j.issn.1009-2412.2006.01.003 Liu S G. Recent development of terahertz science and technology[J]. China Basic Science,2006,8(1):7−12 doi: 10.3969/j.issn.1009-2412.2006.01.003
[3] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):910−928 doi: 10.1109/22.989974
[4] 廖复疆. 真空电子技术——信息化武器装备的心脏(第二版)[M]. 北京:国防工业出版社, 2008 (in Chinese) Liao F J. Vacuum electronics technology (2nd edition)[M]. Beijing:National Defense Industry Press, 2008
[5] Booske J H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation[J]. Physics of Plasmas,2008,15(5):055502 doi: 10.1063/1.2838240
[6] Wang Z H. The influence of surface roughness on conductor at terahertz frequencies[J]. Optik,2014,125(13):3237−3240 doi: 10.1016/j.ijleo.2013.12.051
[7] Gamzina D, Li H Y, Himes L, et al. Nanoscale surface roughness effects on THz vacuum electron device performance[J]. IEEE Transactions on Nanotechnology,2016,15(1):85−93 doi: 10.1109/TNANO.2015.2503984
[8] 张晔, 陈迪, 李建华, 等. 降低SU-8光刻胶侧壁粗糙度的研究[J]. 压电与声光,2007,29(1):118−121 (in Chinese) doi: 10.3969/j.issn.1004-2474.2007.01.039 Zhang Y, Chen D, Li J H, et al. Research of reducing sidewall roughness of SU-8 microstructures[J]. Piezoelectrics & Acoustooptics,2007,29(1):118−121 doi: 10.3969/j.issn.1004-2474.2007.01.039
[9] 王亚军, 徐翱, 颜胜美, 等. 微加工工艺误差对THz折叠波导行波管性能影响[J]. 太赫兹科学与电子信息学报,2015,13(2):179−183 (in Chinese) doi: 10.11805/TKYDA201502.0179 Wang Y J, Xu A, Yan S M, et al. Effect of microfabrication process on terahertz folded waveguide TWT[J]. Journal of Terahertz Science and Electronic Information Technology,2015,13(2):179−183 doi: 10.11805/TKYDA201502.0179
[10] Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology,2011,1(1):54−75 doi: 10.1109/TTHZ.2011.2151610
[11] Smith C H, Xu H Y, Barker N S. Development of a multi-layer SU-8 process for terahertz frequency waveguide blocks[C]//IEEE MTT-S International Microwave Symposium Digest, Long Beach:IEEE, 2005:439−442
[12] Pavolotsky A, Meledin D, Risacher C, et al. Micromachining approach in fabricating of THz waveguide components[J]. Microelectronics Journal,2005,36(7):683−686 doi: 10.1016/j.mejo.2005.04.041
[13] Shin Y M, Barnett L R, Gamzina D, et al. Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching[J]. Applied Physics Letters,2009,95(18):181505 doi: 10.1063/1.3259823
[14] Li H Y, Feng J J, Bai G D. Microfabrication of W-band folded waveguide slow wave structure using DRIE and UV-LIGA technology[C]//2011 IEEE International Vacuum Electronics Conference (IVEC), Bangalore:IEEE, 2011:379−380
[15] Jung-Kubiak C, Reck T J, Siles J V, et al. A multistep DRIE process for complex terahertz waveguide components[J]. IEEE Transactions on Terahertz Science and Technology,2016,6(5):690−695
[16] Tucek J, Basten M, Gallagher D, et al. 1.2:Sub-millimeter and THz power amplifier development at northrop grumman[C]//2010 IEEE International Vacuum Electronics Conference (IVEC), Monterey:IEEE, 2010:19−20
[17] Tucek J C, Basten M A, Gallagher D A, et al. A 100 mW, 0.670 THz power module[C]//IVEC 2012, Monterey:IEEE, 2012:31−32
[18] Tucek J C, Basten M A, Gallagher D A, et al. 0.850 THz vacuum electronic power amplifier[C]//IEEE International Vacuum Electronics Conference, Monterey:IEEE, 2014:153-154
[19] Tucek J C, Basten M A, Gallagher D A, et al. Operation of a compact 1.03 THz power amplifier[C]//2016 IEEE International Vacuum Electronics Conference (IVEC), Monterey:IEEE, 2016:1−2
[20] Makarova O V, Divan R, Tucek J, et al. 9.3:Fabrication of solid copper 220 GHz folded waveguide circuits by UV lithography[C]//2010 IEEE International Vacuum Electronics Conference (IVEC), Monterey:IEEE, 2010:183−184
[21] Makarova O V, Divan R, Tucek J, et al. Fabrication of solid copper two-level waveguide circuits for a THz radar system by UV lithography[C]//2016 IEEE International Vacuum Electronics Conference (IVEC), Monterey:IEEE, 2016:1−2
[22] Malekabadi A, Paoloni C. UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist[J]. Journal of Micromechanics and Microengineering,2016,26(9):095010 doi: 10.1088/0960-1317/26/9/095010
[23] Shin Y M, Gamzina D, Barnett L R, et al. UV lithography and molding fabrication of ultrathick micrometallic structures using a KMPR photoresist[J]. Journal of Microelectromechanical Systems,2010,19(3):683−689 doi: 10.1109/JMEMS.2010.2045880
[24] Xie F Q, Ding G F, Zhao X L, et al. Design, fabrication and measurement of a novel 140 GHz folded waveguide based on SU-8 UV-LIGA technology[J]. Journal of Micromechanics and Microengineering,2015,25(8):085010 doi: 10.1088/0960-1317/25/8/085010
[25] Yao L, Yao J Y, Yang Z Q, et al. A 0.34-THz high-power, slow-wave structure:designing and microfabricating an H-plane ridge-loaded folded waveguide[J]. IEEE Nanotechnology Magazine,2019,13(5):35−42 doi: 10.1109/MNANO.2019.2927798
[26] Billa L R, Shi X B, Akram M N, et al. MEMS fabrication of H-plane and E-plane loaded 400 GHz TWT amplifier[C]//2017 Eighteenth International Vacuum Electronics Conference (IVEC), London:IEEE, 2017:1−2
[27] Joye C D, Calame J P, Garven M, et al. UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists[J]. Journal of Micromechanics and Microengineering,2010,20(12):125016 doi: 10.1088/0960-1317/20/12/125016
[28] Joye C D, Cook A M, Calame J P, et al. Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Transactions on Electron Devices,2014,61(6):1672−1678 doi: 10.1109/TED.2014.2300014
[29] Sabaawi A, Doychinov V, Mathisen S, et al. UV-LIGA microfabrication of 0.3 THz double corrugated waveguide[C]//2017 Eighteenth International Vacuum Electronics Conference (IVEC), London:IEEE, 2017:1−2
[30] Joye C D, Calame J P, Nguyen K T, et al. Microfabrication of wideband distributed beam amplifiers at 220 GHz[C]//2011 IEEE International Vacuum Electronics Conference (IVEC), Bangalore:IEEE, 2011:343−344
[31] Du Y H, Cai J, Pan P, et al. Experimental investigation of an ultrawide bandwidth W-band pulsed traveling-wave tube with microfabricated folded-waveguide circuits[J]. IEEE Transactions on Plasma Science,2019,47(1):219−225 doi: 10.1109/TPS.2018.2880792
[32] Li H Y, Feng J J. Microfabrication of W band folded waveguide slow wave structure using two-step UV-LIGA technology[C]//IVEC 2012, Monterey:IEEE, 2012:387−388
[33] Li H Y, Li D, Hu Y F, et al. UV-LIGA microfabrication for high frequency structures of a 220GHz TWT amplifier[C]//2016 IEEE International Vacuum Electronics Conference (IVEC), Monterey:IEEE, 2016:1−3
[34] Li H Y, Li Y T, Feng J J. Fabrication of 340-GHz folded waveguides using KMPR photoresist[J]. IEEE Electron Device Letters,2013,34(3):462−464 doi: 10.1109/LED.2013.2241389
[35] 谢云竹, 姜琪, 李兴辉, 等. 行波管折叠波导慢波结构UV-LIGA制备技术中的电铸工艺[J]. 微纳电子技术,2023,60(11):1850−1856 (in Chinese) Xie Y Z, Jiang Q, Li X H, et al. Electroforming process for preparation of TWTs folded waveguide slow-wave structure using UV-LIGA Technology[J]. Micronanoelectronic Technology,2023,60(11):1850−1856
[36] Qin S, Jiang Q, Xie Y Z, et al. Research on UV-LIGA process of a folded waveguide for 850GHz TWTs[C]//2023 24th International Vacuum Electronics Conference (IVEC), Chengdu:IEEE, 2023:1−2