[1] Zhao L, Chen Y, Liu Y, et al. Integration of ZnO nanowires in gated field emitter arrays for large-area vacuum microelectronics applications[J]. Current Applied Physics,2017,17(1):85−91 doi: 10.1016/j.cap.2016.11.004
[2] Young R, Ward J, Scire F. Observation of metal-vacuum-metal tunneling, field emission, and the transition region[J]. Physical Review Letters,1971,27(14):922−924 doi: 10.1103/PhysRevLett.27.922
[3] Han J W, Sub Oh J, Meyyappan M. Vacuum nanoelectronics: back to the future?—gate insulated nanoscale vacuum channel transistor[J]. Applied Physics Letters,2012,100(21):213505 doi: 10.1063/1.4717751
[4] Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature,2003,424(6949):654−657 doi: 10.1038/nature01797
[5] Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology,2008,3(8):491−495 doi: 10.1038/nnano.2008.199
[6] Shur M. Wide band gap semiconductor technology: State-of-the-art[J]. Solid-State Electronics,2019,155:65−75 doi: 10.1016/j.sse.2019.03.020
[7] Muhammad Z, Wang Y, Zhang Y, et al. Radiation-tolerant electronic devices using wide bandgap semiconductors[J]. Advanced Materials Technologies,2023,8(2):2200539 doi: 10.1002/admt.202200539
[8] Chen Y, Deng S, Xu N, et al. Recent progress on ZnO nanowires cold cathode and its applications[J]. Nanomaterials,2021,11(8):2150 doi: 10.3390/nano11082150
[9] Zhang Y, Ram M K, Stefanakos E K, et al. Synthesis, characterization, and applications of ZnO nanowires[J]. Journal of Nanomaterials,2012,2012:1−22
[10] Zhao X, Li Q, Xu L, et al. Interface engineering in 1D ZnO-based heterostructures for photoelectrical devices[J]. Advanced Functional Materials,2021,32(11):2106887
[11] Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters,2007,7(4):1003−1009 doi: 10.1021/nl070111x
[12] Dev A, Elshaer A, Voss T. Optical applications of ZnO nanowires[J]. IEEE Journal of Selected Topics in Quantum Electronics,2011,17(4):896−906 doi: 10.1109/JSTQE.2010.2082506
[13] Witkowski B. Applications of ZnO nanorods and nanowires - a review[J]. Acta Physica Polonica A,2018,134(6):1226−1246 doi: 10.12693/APhysPolA.134.1226
[14] Liao Z M, Xu J, Zhang J M, et al. Photovoltaic effect and charge storage in single ZnO nanowires[J]. Applied Physics Letters,2008,93(2):023111 doi: 10.1063/1.2957470
[15] Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires[J]. Advanced Materials,2004,16(22):2028−2032 doi: 10.1002/adma.200400629
[16] Mosquera E, Bernal J, Zarate R A, et al. Growth and electron field-emission of single-crystalline ZnO nanowires[J]. Materials Letters,2013,93:326−329 doi: 10.1016/j.matlet.2012.11.119
[17] Li C, Zhang Y, Mann M, et al. Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers[J]. Applied Physics Letters,2010,96(14):143114 doi: 10.1063/1.3380597
[18] Son B H, Park D J, Ahn Y H. Electronic control of ultrafast field emission in carbon nanotube gaps[J]. Applied Physics Letters,2019,115(16):163102 doi: 10.1063/1.5097724
[19] Huang Y, Bai X, Zhang Y, et al. Field-emission properties of individual ZnO nanowires studied in situ by transmission electron microscopy[J]. Journal of Physics: Condensed Matter,2007,19(17):176001 doi: 10.1088/0953-8984/19/17/176001
[20] Chu F H, Huang C W, Hsin C L, et al. Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties[J]. Nanoscale,2012,4(5):1471−1475 doi: 10.1039/C1NR10796H
[21] Herink G, Solli D R, Gulde M, et al. Field-driven photoemission from nanostructures quenches the quiver motion[J]. Nature,2012,483(7388):190−193 doi: 10.1038/nature10878
[22] Piglosiewicz B, Schmidt S, Park D J, et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures[J]. Nature Photonics,2013,8(1):37−42
[23] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics,2009,81(1):163−234 doi: 10.1103/RevModPhys.81.163
[24] Karnetzky C, Zimmermann P, Trummer C, et al. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters[J]. Nature Communications,2018,9(1):2471 doi: 10.1038/s41467-018-04666-y
[25] Park D J, Piglosiewicz B, Schmidt S, et al. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip[J]. Physical Review Letters,2012,109(24):244803 doi: 10.1103/PhysRevLett.109.244803
[26] Zhou S, Guo X, Chen K, et al. Optical-field-driven electron tunneling in metal-insulator-metal nanojunction[J]. Advanced Science,2021,8(24):e2101572 doi: 10.1002/advs.202101572
[27] Yang P, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties[J]. Advanced Functional Materials,2002,12(5):323−331 doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
[28] Zhang D, Lee S K, Chava S, et al. Investigation of electrical and optoelectronic properties of zinc oxide nanowires[J]. Physica B: Condensed Matter,2011,406(20):3768−3772 doi: 10.1016/j.physb.2011.06.001
[29] Vivas M G, Shih T, Voss T, et al. Nonlinear spectra of ZnO: reverse saturable, two- and three-photon absorption[J]. Optics Express,2010,18(9):9628−9633 doi: 10.1364/OE.18.009628
[30] Dai D C, Xu S J, Shi S L, et al. Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature[J]. Optics Letters,2005,30(24):3377−3379 doi: 10.1364/OL.30.003377
[31] Li Z, Bai B, Li C, et al. Efficient photo-thermionic emission from carbon nanotube arrays[J]. Carbon,2016,96:641−646 doi: 10.1016/j.carbon.2015.09.074
[32] Vahdani Moghaddam M, Yaghoobi P, Sawatzky G A, et al. Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission[J]. ACS Nano,2015,9(4):4064−4069 doi: 10.1021/acsnano.5b00115
[33] Li C, Li Z, Chen K, et al. Edge effect enhanced photo-thermionic emission from a carbon nanotubes array[J]. Applied Physics Letters,2017,110(9):093105 doi: 10.1063/1.4977189
[34] Seiffert L, Paschen T, Hommelhoff P, et al. High-order above-threshold photoemission from nanotips controlled with two-color laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics,2018,51(13):134001 doi: 10.1088/1361-6455/aac34f
[35] Zhou S, Chen K, Cole M T, et al. Ultrafast electron tunneling devices—from electric-field driven to optical-field driven[J]. Advanced Materials,2021,33(35):2101449 doi: 10.1002/adma.202101449