[1] |
Huang C Y, Li H, Wu Y, et al. Inorganic halide perovskite quantum dots: A versatile nanomaterial platform for electronic applications[J]. Nano-Micro Letters,2023,15(1):16 doi: 10.1007/s40820-022-00983-6
|
[2] |
Liu M, Yazdani N, Yarema M, et al. Colloidal quantum dot electronics[J]. Nature Electronics,2021,4(8):548−558 doi: 10.1038/s41928-021-00632-7
|
[3] |
Pu C, Qin H, Gao Y, et al. Synthetic control of exciton behavior in colloidal quantum dots[J]. Journal of the American Chemical Society,2017,139(9):3302−3311 doi: 10.1021/jacs.6b11431
|
[4] |
Yuan Q, Wang T, Yu P, et al. A review on the electroluminescence properties of quantum-dot light-emitting diodes[J]. Organic Electronics,2021,90:106086 doi: 10.1016/j.orgel.2021.106086
|
[5] |
Chung D S, Davidson-Hall T, Cotella G, et al. Significant lifetime enhancement in QLEDs by reducing interfacial charge accumulation via fluorine incorporation in the ZnO electron transport layer[J]. Nano-Micro Letters,2022,14(1):212 doi: 10.1007/s40820-022-00970-x
|
[6] |
Chao W C, Chiang T H, Liu Y C, et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility[J]. Communications Materials,2021,2(1):96 doi: 10.1038/s43246-021-00203-5
|
[7] |
Chen S, Cao W, Liu T, et al. On the degradation mechanisms of quantum-dot light-emitting diodes[J]. Nature Communications,2019,10(1):765 doi: 10.1038/s41467-019-08749-2
|
[8] |
Shen H, Gao Q, Zhang Y, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nature Photonics,2019,13(3):192−197 doi: 10.1038/s41566-019-0364-z
|
[9] |
Kweon H, Choi K Y, Park H W, et al. Silicone engineered anisotropic lithography for ultrahigh-density OLEDs[J]. Nature communications,2022,13(1):6775 doi: 10.1038/s41467-022-34531-y
|
[10] |
Li J, Qiu J, Xie B, et al. Light-emitting MOS junction for ultrahigh-resolution quantum dot displays[J]. Nano Energy,2021,120:109105
|
[11] |
Li W, Wang K, Li J, et al. Working mechanisms of nanoscale light-emitting diodes operating in non-electrical contact and non-carrier injection mode: Modeling and simulation[J]. Nanomaterials,2022,12(6):912 doi: 10.3390/nano12060912
|
[12] |
Shen Y, Li W, Wang K, et al. In-well ionization from monolayer quantum dots for Non-carrier-injection electroluminescence[J]. The Journal of Physical Chemistry Letters,2022,13(45):10649−10655 doi: 10.1021/acs.jpclett.2c02879
|
[13] |
Wu C, Wang K, Zhang Y, et al. Emerging nanopixel light-emitting displays: significance, challenges, and prospects[J]. The Journal of Physical Chemistry Letters,2021,12(14):3522−3527 doi: 10.1021/acs.jpclett.1c00248
|
[14] |
Wan Q, Li Z, Zhang C, et al. Surface oxidation of quantum dots to improve the device performance of quantum dot light-emitting diodes[J]. The Journal of Physical Chemistry C,2020,124(52):28424−28430 doi: 10.1021/acs.jpcc.0c09814
|
[15] |
Yu P, Yuan Q, Zhao J, et al. Electronic and excitonic processes in quantum dot light-emitting diodes[J]. The Journal of Physical Chemistry Letters,2022,13(13):2878−2884 doi: 10.1021/acs.jpclett.2c00604
|
[16] |
Amelia M, Impellizzeri S, Monaco S, et al. Structural and size effects on the spectroscopic and redox properties of CdSe nanocrystals in solution: the role of defect states[J]. Chem Phys Chem,2011,12(12):2280−2288 doi: 10.1002/cphc.201100300
|
[17] |
Kuçur E, Bücking W, Nann T. Electrochemical determination of mesoscopic phenomena, defect states in CdSe nanocrystals and charge carrier manipulability[J]. Microchimica Acta,2008,160:299−308 doi: 10.1007/s00604-007-0899-4
|
[18] |
Nguyen H T, Duong A T, Lee S. Investigation the effect of different surface ligand treatments on luminescence and performance of quantum dot LEDs[J]. Journal of Materials Research,2021,36(16):3309−3316 doi: 10.1557/s43578-021-00344-w
|
[19] |
Bozyigit D, Yarema O, Wood V. Origins of low quantum efficiencies in quantum dot LEDs[J]. Advanced Functional Materials,2013,23(24):3024−3029 doi: 10.1002/adfm.201203191
|