[1] |
金盛龙, 迟骋, 李宇, 等. 稀疏驱动自适应线谱增强的水下目标谱熵检测. 声学学报, 2021; 46(6): 1059−1069 doi: 10.15949/j.cnki.0371-0025.2021.06.025
|
[2] |
Kim S, Kinnas S A. Numerical prediction of propeller-induced noise in open water and ship behind conditions. Ocean Eng., 2022; 261: 1−30 doi: 10.1016/j.oceaneng.2022.112122
|
[3] |
蒋国健, 马杰, 林建恒, 等. 舰船噪声不同窄带包络间相关. 声学学报, 2002; 27(5): 425−428 doi: 10.3321/j.issn:0371-0025.2002.05.009
|
[4] |
Bao F, Li C, Wang X, et al. Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition. J. Acoust. Soc. Am., 2010; 128(1): 206−214 doi: 10.1121/1.3436543
|
[5] |
Yang X L, Zhou J, Wang B H, et al. Application of adaptive line enhancement on testing the ship-radiated noise. Ship Sci. Technol., 2009; 31(3): 93−95 doi: 10.3404/j.issn.1672-7649.2009.03.019
|
[6] |
Kang C Y, Zhang X H. Simulation and application study based on two NLMS self-adaptation filter. J. Syst. Simul., 2009; 21(7): 1999−2001 doi: 10.1360/972008-2465
|
[7] |
Liu H T, Cong W H, Pan X. Line spectral detection of tone weak signal: An adaptive line enhancement technique using coherent addition and frequency domain batch. J. Zhejiang Univ. (Eng. Sci.), 2007; 41(12): 2048−2051 doi: 10.3785/j.issn.1008-973X.2007.12.021
|
[8] |
Hao Y, Chi C, Liang G L. Sparsity-driven adaptive enhancement of underwater acoustic tonals for passive sonars. J. Acoust. Soc. Am., 2020; 147(4): 2192−2204 doi: 10.1121/10.0001017
|
[9] |
罗斌, 王茂法, 王世闯. 一种高效的弱目标线谱检测算法. 声学技术, 2017; 36(2): 171−176 doi: 10.16300/j.cnki.1000-3630.2017.02.013
|
[10] |
李悦, 马晓川, 王磊, 等. 非高斯环境下的深度学习脉冲信号去噪与重构. 应用声学, 2021; 40(1): 131−141 doi: 10.11684/j.issn.1000-310X.2021.01.015
|
[11] |
莫雪晶, 文洪涛, 杨燕明, 等. 一种α稳定分布参数估计方法及其在冰源噪声统计建模中的应用. 声学学报, 2023; 48(2): 319−326 doi: 10.15949/j.cnki.0371-0025.2023.02.001
|
[12] |
Milne A R, Ganton J H. Ambient noise under arctic-sea ice. J. Acoust. Soc. Am., 1964; 36(5): 855−863 doi: 10.1121/1.1919103
|
[13] |
Zakarauskas P, Parfitt C J, Thorleifson J M. Automatic extraction of spring time Arctic ambient noise transients. J. Acoust. Soc. Am., 1991; 90(1): 470−474 doi: 10.1121/1.401271
|
[14] |
Ganton J H, Milne A R. Temperature and wind-dependent ambient noise under midwinter pack ice. J. Acoust. Soc. Am., 1965; 38(3): 406−411 doi: 10.1121/1.1909697
|
[15] |
邱天爽. 相关熵与循环相关熵信号处理研究进展. 电子与信息学报, 2020; 42(1): 105−118 doi: 10.11999/JEIT190646
|
[16] |
Sanei S, Lee T, Abolghasemi V. A new adaptive line enhancer based on singular spectrum analysis. IEEE Trans. Biomed. Eng., 2012; 59(2): 428 doi: 10.1109/TBME.2011.2173936
|
[17] |
Hao Q S, Zhang X, Wang Y, et al. A novel rail defect detection method based on undecimated lifting wavelet packet transform and Shannon entropy-improved adaptive line enhancer. J. Sound. Vib., 2018; 425: 208−220 doi: 10.1016/j.jsv.2018.04.003
|
[18] |
李贵红, 赵丽丽, 杜昕, 等. 基于EMD和香农熵的刀具磨损故障诊断系统开发. 工业仪表与自动化装置, 2019; 266(2): 114−117 doi: 10.3969/j.issn.1000-0682.2019.02.030
|
[19] |
Liu W, Pokharel P P, Principe J C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process., 2007; 55(11): 5286−5298 doi: 10.1109/TSP.2007.896065
|
[20] |
宋国丽, 郭新毅, 马力. 海洋环境噪声中的α稳定分布模型. 声学学报, 2019; 44(2): 177−188 doi: 10.15949/j.cnki.0371-0025.2019.02.004
|
[21] |
Zha D F, Qiu T S. Underwater sources location in non-Gaussian impulsive noise environments. Digital Signal Process., 2006; 16(2): 149−163 doi: 10.1016/j.dsp.2005.04.008
|
[22] |
Nan S H, Qian G B. Univariate kernel sums correntropy for adaptive filtering. Appl. Acoust., 2021; 184(15): 108316−108324 doi: 10.1016/J.APACOUST.2021.108316
|
[23] |
Liu C L, Tan J P, Huang Z H. Maximum correntropy criterion-based blind deconvolution and its application for bearing fault detection. Measurement, 2022; 191: 110740−110749 doi: 10.1016/j.measurement.2022.110740
|
[24] |
Ma W T, Qu H, Gui G, et al. Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Franklin Inst., 2015; 352(7): 2708−2727 doi: 10.1016/j.jfranklin.2015.03.039
|
[25] |
Zhao H Q, Tian B Y, Chen B D. Robust stable iterated unscented Kalman filter based on maximum correntropy criterion. Automatica, 2022; 142: 110410−110418 doi: 10.1016/j.automatica.2022.110410
|
[26] |
Li Y, Jia L J, Yang Z J, et al. Diffusion bias-compensated recursive maximum correntropy criterion algorithm with noisy input. Digital Signal Process., 2022; 122: 103373−103382 doi: 10.1016/j.dsp.2021.103373
|
[27] |
Chen B, Xing L, Liang J, et al. Principe steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett., 2014; 21(7): 880−884 doi: 10.1109/LSP.2014.2319308
|
[28] |
史加荣, 王丹, 尚凡华, 等. 随机梯度下降算法研究进展. 自动化学报, 2021; 47(9): 2103−2119 doi: 10.16383/j.aas.c190260
|
[29] |
Gong Y, Cowan C F N. An LMS style variable tap-length algorithm for structure adaptation. IEEE Trans. Signal Process, 2005; 53(7): 2400−2407 doi: 10.1109/TSP.2005.849170
|
[30] |
刘春辉, 齐越, 丁文锐, 等. 最大相关熵准则自适应滤波器的分数阶长算法. 北京航空航天大学学报, 2016; 42(2): 413−420 doi: 10.13700/j.bh.1001-5965.2015.0137
|
[31] |
Haykin S O. Adaptive filter theory. London: Prentice Hall, 2002
|
[32] |
郝宇. 基于水下小尺度平台的被动探测关键技术研究. 博士学位论文, 哈尔滨: 哈尔滨工程大学, 2020
|
[33] |
Pelekanakis K, Chitre M. Adaptive sparse channel estimation under symmetric alpha-stable noise. IEEE Trans. Wireless Commun., 2014; 13(6): 3183−3195 doi: 10.1109/TWC.2014.042314.131432
|