[1] 王超, 笪良龙, 韩梅, 等. 单矢量水听器稀疏近似最小方差方位估计算法. 声学学报, 2021; 46(6): 1050−1058 doi: 10.15949/j.cnki.0371-0025.2021.06.024
[2] 谭鹏, 胡博, 张友文, 等. 交叉验证多路径匹配追踪水声矢量阵稀疏方位估计. 声学学报, 2022; 47(5): 557−567 doi: 10.15949/j.cnki.0371-0025.2022.05.014
[3] Krim H, Viberg M. Two decades of array signal processing research: The parametric approach. IEEE. Signal. Proc. Mag., 1996; 13(4): 67−94 doi: 10.1109/79.526899
[4] Cox H, Zeskind R, Owen M. Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process., 1987; 35(10): 1365−1376 doi: 10.1109/TASSP.1987.1165054
[5] Yang T C, Yates T. Matched-beam processing: Application to a horizontal line array in shallow water. J. Acoust. Soc. Am., 1998; 104(3): 1316−1330 doi: 10.1121/1.424341
[6] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553): 436−444 doi: 10.1038/nature14539
[7] Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks, 2015; 61: 85−117 doi: 10.1016/j.neunet.2014.09.003
[8] Deng L, Yu D. Deep learning: Methods and applications. Found. Trends Signal Process., 2014; 7(3-4): 197−387 doi: 10.1561/2000000039
[9] Niu H, Reeves E, Gerstoft P. Source localization in an ocean waveguide using supervised machine learning. J. Acoust. Soc. Am., 2017; 142(3): 1176−1188 doi: 10.1121/1.5000165
[10] Niu H, Ozanich E, Gerstoft P. Ship localization in Santa Barbara Channel using machine learning classifiers. J. Acoust. Soc. Am., 2017; 142(5): EL455−EL460 doi: 10.1121/1.5010064
[11] Steinberg B Z, Beran M J, Chin S H, et al. A neural network approach to source localization. J. Acoust. Soc. Am., 1991; 90(4): 2081−2090 doi: 10.1121/1.401635
[12] Elbir A M. Deep MUSIC: Multiple signal classification via deep learning. IEEE Sens. Lett., 2020; 4(4): 1−4 doi: 10.1109/LSENS.2020.2980384
[13] Liu Y, Chen H, Wang B. DOA estimation based on CNN for underwater acoustic array. Appl. Acoust., 2021; 172: 107594 doi: 10.1016/j.apacoust.2020.107594
[14] 曹怀刚. 单矢量水听器波达方向估计的深度学习模型构建与应用. 博士学位论文, 北京: 中国科学院大学, 2021: 44−53
[15] Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Networks., 1997; 8(1): 98−113 doi: 10.1109/72.554195
[16] Zhang S, Xing S. Intelligent recognition of underwater acoustic target noise by multi-feature fusion. 11th International Symposium on Computational Intelligence and Design, IEEE, Hangzhou, China, 2018, 1: 212−215
[17] Ke X, Yuan F, Cheng E. Integrated optimization of underwater acoustic ship-radiated noise recognition based on two-dimensional feature fusion. Appl. Acoust., 2020; 159: 107057 doi: 10.1016/j.apacoust.2019.107057
[18] Baltrušaitis T, Ahuja C, Morency L P. Multimodal machine learning: A survey and taxonomy. IEEE. Trans. Pattern Anal. Mach. Intell., 2018; 41(2): 423−443 doi: 10.1109/TPAMI.2018.2798607
[19] Jensen F B, Kuperman W A, Porter M B, et al. Computational ocean acoustics. 2nd Edition. New York: Springer, 2011: 269
[20] Cao H, Wang W, Su L, et al. Deep transfer learning for underwater direction of arrival using one vector sensor. J. Acoust. Soc. Am., 2021; 149(3): 1699−1711 doi: 10.1121/10.0003645