[1] Corcos G M. The structure of the turbulent pressure field in boundary layer flows. J. Fluid Mech., 1964; 18: 353−378 doi: 10.1017/s002211206400026x
[2] Carpenter A L, Kewley D J. Investigation of low wavenumber turbulent boundary layer pressure fluctuations on long flexible cylinders. The Eighth Australasian Fluid Mechanics Conference, NSW, Australia, 1983
[3] Lindemann O A. Influence of material properties on low wave-number turbulent boundary layer noise in towed arrays. U. S. Nav. Underwater Acoust., 1981; 31(2): 265−271
[4] 汤渭霖, 吴一. TBL压力起伏激励下粘弹性圆柱壳内的噪声场: I. 噪声产生机理. 声学学报, 1997; 22(1): 60−69 doi: 10.15949/j.cnki.0371-0025.1997.01.008
[5] 王斌, 汤渭霖, 范军. 水听器非轴线布放时的拖线阵流噪声响应. 声学学报, 2008; 33(5): 402−408 doi: 10.15949/j.cnki.0371-0025.2008.05.003
[6] 王晓林, 王茂法. 基于C&K修正模型的拖曳阵流噪声特性仿真研究. 声学与电子工程, 2010; (1): 9−13 doi: 10.3969/j.issn.2096-2657.2010.01.003
[7] 杨秀庭, 孙贵青, 李敏. 矢量拖曳式线列阵声呐流噪声影响初探. 声学技术, 2007; 26(5): 775−780 doi: 10.3969/j.issn.1000-3630.2007.05.002
[8] 杨秀庭, 孙贵青, 李敏. 矢量拖曳线列阵声呐流噪声的空间相关性研究. 声学学报, 2007; 32(6): 547−552 doi: 10.15949/j.cnki.0371-0025.2007.06.010
[9] 孟彧仟. 矢量拖线阵流致噪声抑制方法研究. 声学与电子工程, 2010; (1): 20−24 doi: 10.3969/j.issn.2096-2657.2010.01.005
[10] 李磊, 高洁, 吴克桐, 等. 一种基于矢量拖曳阵的拖船干扰抵消算法. 声学技术, 2009; 28(5): 582−585 doi: 10.3969/j.issn1000-3630.2009.05.004
[11] 李磊, 吴培荣, 邓红超, 等. 矢量水听器拖曳阵的信号模拟器设计. 应用声学, 2010; 29(1): 28−35 doi: 10.3969/j.issn.1000-310X.2010.01.005
[12] 张宾, 孙长瑜. 拖船干扰抵消的一种新方法研究. 仪器仪表学报, 2006; 27(S2): 1355−1357 doi: 10.3321/j.issn:0254-3087.2006.z2.137
[13] 杨龙, 杨益新, 徐灵基. 水下航行器噪声源分布位置估计的瞬时频率变化率算法研究. 声学学报, 2015; 40(4): 500−510 doi: 10.15949/j.cnki.0371-0025.2015.04.002
[14] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015; 64(17): 189−199 doi: 10.7498/aps.64.174304
[15] 蔡盛盛, 张佳维, 冯大航, 等. 改进正则化正交匹配追踪波达方向估计方法. 声学学报, 2014; 39(1): 35−41 doi: 10.15949/j.cnki.0371-0025.2014.01.004
[16] 朱文龙, 印明, 佟建飞, 等. 多频带期望值最大声信号时延估计. 声学学报, 2022; 47(6): 856−866 doi: 10.15949/j.cnki.0371-0025.2022.06.014
[17] 韩东, 李建, 康春玉, 等. 拖曳线列阵声呐平台噪声的空域矩阵滤波抑制技术. 声学学报, 2014; 39(1): 27−34 doi: 10.15949/j.cnki.0371-0025.2014.01.003
[18] Meng D Y, Torre D L. Robust matrix factorization with unknown noise. IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 2013: 1337–1344
[19] Yong H W, Meng D W, Zuo W M, et al. Robust online matrix factorization for dynamic background subtraction. IEEE Trans. Pattern Anal. Mach. Intell., 2018; 40(7): 1726−1740 doi: 10.1109/TPAMI.2017.2732350
[20] Yu L, Antoni J, Deng J Y, et al. Low-rank gaussian mixture modeling of space-snapshot representation of microphone array measurements for acoustic imaging in a complex noisy environment. Mech. Syst. Signal Process., 2022; 165: 108294 doi: 10.1016/j.ymssp.2021.108294
[21] Yu L, Chen Y Q, Zhang Y L, et al. On-line harmonic signal denoising from the measurement with non-stationary and non-Gaussian noise. Signal Process., 2022; 201: 108723 doi: 10.1016/j.sigpro.2022.108723
[22] Emiya V, Hamon R, Chaux C. Being low-rank in the time-frequency plane. IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 2018: 4659−4663
[23] Usevich K, Emiya V, Brie D, et al. Characterization of finite signals with low-rank STFT. IEEE Statistical Signal Processing Workshop, Germany, 2018: 393–397
[24] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B, 1977; 39: 1−22 doi: 10.1111/j.2517-6161.1977.tb01600.x
[25] Bishop C M. Pattern recognition and machine learning. New York: Springer, 2006
[26] Torre D L, Black M J. A framework for robust subspace learning. Int. J. Comput. Vision, 2003; 54: 117−142 doi: 10.1023/A:1023709501986
[27] Yang Y, Rao J. Robust and efficient harmonics denoising in large dataset based on random SVD and soft thresholding. IEEE Access, 2019; 7: 77607−77617 doi: 10.1109/ACCESS.2019.2921579