[1] 王海斌, 汪俊, 台玉朋, 等. 水声通信技术研究进展与技术水平现状. 信号处理, 2019; 35(9): 1441−1449 doi: 10.16798/j.issn.1003-0530.2019.09.001
[2] 武岩波, 朱敏, 朱维庆, 等. 接近非相干水声通信信道容量的信号处理算法. 声学学报, 2015; 40(1): 117−123 doi: 10.15949/j.cnki.0371-0025.2015.01.015
[3] Zhao S, Yan S, Xi J. Adaptive Turbo equalization for differential OFDM systems in underwater acoustic communications. IEEE Trans. Veh. Technol., 2020; 69(11): 13937−13941 doi: 10.1109/TVT.2020.3017778
[4] Singer A C, Nelson J K, Kozat S S. Signal processing for underwater acoustic communications. IEEE Commun. Mag., 2009; 47(1): 90−96 doi: 10.1109/MCOM.2009.4752683
[5] Leinhos H A. Block-adaptive decision feedback equalization with integral error correction for underwater acoustic communications. OCEANS 2000, IEEE, Providence, RI, USA, 2000: 817−822
[6] Tüchler M, Singer A C, Koetter R. Turbo equalization: Principles and new results. IEEE Trans. Commun., 2002; 50(5): 432−447 doi: 10.1109/TCOMM.2002.1006557
[7] Choi J W, Drost R, Singer A C, et al. Iterative multi-channel equalization and decoding for high frequency underwater acoustic communications. 5th IEEE Sensor Array Multichannel Signal Process Workshop, IEEE, Darmstadt, Germany 2008: 127−130
[8] Choi J W, Riedl T J, Kim K, et al. Adaptive linear Turbo equalization over doubly selective channels. IEEE J. Oceanic Eng., 2011; 36(4): 473−478 doi: 10.1109/JOE.2011.2158013
[9] Tao J, Zheng R, Xiao C, et al. Channel equalization for single carrier MIMO underwater acoustic communications. EURASIP J. Adv. Signal Process., 2010; 2010: 281769 doi: 10.1155/2010/281769
[10] Otnes R, Tuchler M. Iterative channel estimation for Turbo equalization of time-varying frequency-selective channels. IEEE Trans. Wirel. Commun., 2005; 3(6): 1918−1923 doi: 10.1109/TWC.2004.837421
[11] Zheng Y R, Wu J, Xiao C. Turbo equalization for single-carrier underwater acoustic communications. IEEE Commun. Mag., 2015; 53(11): 79−87 doi: 10.1109/MCOM.2015.7321975
[12] Laot C, Glavieux A, Labat J. Turbo equalization: Adaptive equalization and channel decoding jointly optimized. IEEE J. Sel. Areas Commun., 2001; 19(9): 1744−1752 doi: 10.1109/49.947038
[13] Singer A. Adaptive equalization, tracking, and decoding for high-rate underwater acoustic communications. J. Acoust. Soc. Am., 2012; 131(4S): 3276 doi: 10.1121/1.4708247
[14] Wu J, Wang L, Xiao C. Low-complexity soft-interference cancellation Turbo equalization for multi-input-multi-output systems with multilevel modulations. Comm. Lett., 2015; 9(5): 728−735 doi: 10.1109/GLOCOM.2013.6831590
[15] Duan W, Tao J, Zheng Y R. Efficient adaptive Turbo equalization for multiple-input-multiple-output underwater acoustic communications. IEEE J. Oceanic Eng., 2018; 43(3): 792−804 doi: 10.1109/JOE.2017.2707285
[16] Li D, Wu Y, Zhu M, et al. An enhanced iterative receiver based on vector approximate message passing for deep-sea vertical underwater acoustic communications. J. Acoust. Soc. Am., 2021; 149(3): 1549−1558 doi: 10.1121/10.0003625
[17] Song H C. Bidirectional equalization for underwater acoustic communication. J. Acoust. Soc. Am., 2012; 131(4): EL342−EL347 doi: 10.1121/1.3695075
[18] Xi J, Yan S, Xu L, et al. Soft direct-adaptation based bidirectional Turbo equalization for MIMO underwater acoustic communications. China Commun., 2017; 14(7): 1−12 doi: 10.1109/CC.2017.8010969
[19] Eksioglu E M, Tanc A K. RLS algorithm with convex regularization. IEEE Signal Process. Lett., 2011; 18(8): 470−473 doi: 10.1109/LSP.2011.2159373
[20] Eksioglu E M. Group sparse RLS algorithms. Int. J. Adapt. Control Signal Process., 2014; 28(12): 1398−1412 doi: 10.1002/acs.2449
[21] Yu Y, Huang Z, He H, et al. Sparsity-aware robust normalized subband adaptive filtering algorithms with alternating optimization of parameter. IEEE Trans. Circuits Syst. II Express Briefs, 2022; 69(9): 3934−3938 doi: 10.1109/TCSII.2022.3171672
[22] Yu Y, Lu L, Zakharov Y, et al. Study of robust sparsity-aware RLS algorithms with jointly-optimized parameters for impulsive noise environments. IEEE Signal Process. Lett., 2022; 29: 1037−1041 doi: 10.1109/LSP.2022.3166395
[23] Shi K, Shi P. Convergence analysis of sparse LMS algorithms with l1-norm penalty based on white input signal. Signal Process., 2010; 90(12): 3289−3293 doi: 10.1016/j.sigpro.2010.05.015
[24] Freitag L, Johnson M, Stojanovic M. Efficient equalizer update algorithms for acoustic communication channels of varying complexity. OCEANS '97, IEEE, Halifax, NS, Canada, 1997: 580−585
[25] Shi K, Shi P. Adaptive sparse Volterra system identification with l0-norm penalty. Signal Process., 2011; 91(10): 2432−2436 doi: 10.1016/j.sigpro.2011.04.028