[1] 王悦悦, 王海斌, 台玉朋, 等. 深海远程正交频分复用水声通信块间迭代稀疏信道估计方法. 声学学报, 2023; 48(1): 16−26 doi: 10.15949/j.cnki.0371-0025.2023.01.007
[2] Zhao S, Yan S, Xi J. Adaptive turbo equalization for differential OFDM systems in underwater acoustic communications. IEEE Trans. Veh. Technol., 2020; 69(11): 13937−13941 doi: 10.1109/TVT.2020.3017778
[3] Zhao H, Yang C, Xu Y, et al. Model-driven based deep unfolding equalizer for underwater acoustic OFDM communications. IEEE Trans. Veh. Technol., 2023; 72(5): 6056−6067 doi: 10.1109/TVT.2022.3230143
[4] Li Z, Stojanovic M. Multicarrier acoustic communications in multiuser and interference-limited regimes. IEEE J. Oceanic Eng., 2023; 48(2): 542−553 doi: 10.1109/JOE.2022.3212826
[5] Qasem Z A H, Wang J, Leftah H A, et al. Real signal DHT-OFDM with index modulation for underwater acoustic communication. IEEE J. Oceanic Eng., 2023; 48(1): 246−259 doi: 10.1109/JOE.2022.3199202
[6] Ghosh M. Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems. IEEE Trans. Commun., 1996; 44(2): 145−147 doi: 10.1109/26.486604
[7] Chitre M A, Potter J R, Ong S H. Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise. IEEE J. Oceanic Eng., 2006; 31(2): 497−503 doi: 10.1109/JOE.2006.875272
[8] Ma Y H, So P L, Gunawan E. Performance analysis of OFDM systems for broadband power line communications under impulsive noise and multipath effects. IEEE Trans. Power Delivery, 2005; 20(2): 674−682 doi: 10.1109/TPWRD.2005.844320
[9] Suraweera H A, Armstrong J. Noise bucket effect for impulse noise in OFDM. Electron. Lett., 2004; 40(18): 1156−1157 doi: 10.1049/el:20045825
[10] Feng X, Wang J, Kuai X, et al. Message passing-based impulsive noise mitigation and channel estimation for underwater acoustic OFDM communications. IEEE Trans. Veh. Technol., 2022; 71(1): 611−625 doi: 10.1109/TVT.2021.3130061
[11] Lv X, Li Y, Wu Y, et al. Kalman filter based recursive estimation of slowly fading sparse channel in impulsive noise environment for OFDM systems. IEEE Trans. Veh. Technol., 2020; 69(3): 2828−2835 doi: 10.1109/TVT.2020.2965005
[12] 李娜娜, 李有明, 余明宸, 等. 水声通信中基于正则化阈值迭代的脉冲噪声抑制方法. 电信科学, 2019; 35(3): 76−83 doi: 10.11959/j.issn.1000-0801.2019010
[13] Chen P, Rong Y, Nordholm S, et al. Joint channel and impulsive noise estimation in underwater acoustic OFDM systems. IEEE Trans. Veh. Technol., 2017; 66(11): 10567−10571 doi: 10.1109/TVT.2017.2743220
[14] Rozic N, Banelli P, Begusic D, et al. Multiple-threshold estimators for impulsive noise suppression in multicarrier communications. IEEE Trans. Signal Process., 2018; 66(6): 1619−1633 doi: 10.1109/TSP.2018.2793895
[15] Zhu Y, Guo D, Honig M L. A message-passing approach for joint channel estimation, interference mitigation and decoding. IEEE Trans. Wireless Commun., 2009; 8(12): 6008−6018 doi: 10.1109/TWC.2009.12.081708
[16] Kuai X, Sun H, Zhou S, et al. Impulsive noise mitigation in underwater acoustic OFDM systems. IEEE Trans. Veh. Technol., 2016; 65(10): 8190−8202 doi: 10.1109/TVT.2016.2516539
[17] Qiao G, Song Q, Ma L, et al. Sparse bayesian learning for channel estimation in time-varying underwater acoustic OFDM communication. IEEE Access, 2018; 6: 56675−56684 doi: 10.1109/ACCESS.2018.2873406
[18] Al-Naffouri T Y, Quadeer A A, Caire G. Impulse noise estimation and removal for OFDM systems. IEEE Trans. Commun., 2014; 62(3): 976−989 doi: 10.1109/TCOMM.2014.012414.130244
[19] Liu S, Yang F, Ding W, et al. Double kill: Compressive-sensing-based narrow-band interference and impulsive noise mitigation for vehicular communications. IEEE Trans. Veh. Technol., 2016; 65(7): 5099−5109 doi: 10.1109/TVT.2015.2459060
[20] Chen P, Rong Y, Nordholm S, et al. Joint channel estimation and impulsive noise mitigation in underwater acoustic OFDM communication systems. IEEE Trans. Wireless Commun., 2017; 16(9): 6165−6178 doi: 10.1109/TWC.2017.2720580
[21] 吕新荣, 李有明, 余明宸. OFDM系统的信道与脉冲噪声的联合估计方法. 通信学报, 2018; 39(3): 191−198 doi: 10.11959/j.issn.1000-436x.2018047
[22] Lv X, Li Y, Wu Y, et al. Joint channel estimation and impulsive noise mitigation method for OFDM systems using sparse Bayesian learning. IEEE Access, 2019; 7: 74500−74510 doi: 10.1109/ACCESS.2019.2920724
[23] Wang S, He Z, Niu K, et al. New results on joint channel and impulsive noise estimation and tracking in underwater acoustic OFDM systems. IEEE Trans. Wireless Commun., 2020; 19(4): 2601−2612 doi: 10.1109/TWC.2020.2966622
[24] Prasad R, Murthy C R, Rao B D. Joint approximately sparse channel estimation and data detection in OFDM systems using sparse Bayesian learning. IEEE Trans. Signal Process., 2014; 62(14): 3591−3603 doi: 10.1109/TSP.2014.2329272
[25] Tzikas D G, Likas A C, Galatsanos N P. The variational approximation for Bayesian inference. IEEE Signal Process. Mag., 2008; 25(6): 131−146 doi: 10.1109/MSP.2008.929620
[26] Farrukh F, Baig S, Mughal M J. Performance comparison of DFT-OFDM and wavelet-OFDM with zero-forcing equalizer for FIR channel equalization. International Conference on Electrical Engineering. IEEE, Lahore, Pakistan, 2007: 1−5
[27] Sharif B S, Neasham J, Hinton O R, et al. A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE J. Oceanic Eng., 2000; 25(1): 52−61 doi: 10.1109/48.820736