[1] Evans N W, Kinnunen T, Yamagishi J. Spoofing and countermeasures for automatic speaker verification. Interspeech, Lyon, France, 2013: 925−929
[2] Alegre F, Janicki A, Evans N. Re-assessing the threat of replay spoofing attacks against automatic speaker verification. International Conference of the Biometrics Special Interest Group, IEEE, Darmstadt, Germany, 2014: 1−6
[3] Tapkir P A, Kamble M R, Patil H A, et al. Replay spoof detection using power function based features. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, IEEE, Honolulu, HI, USA, 2018: 1019−1029
[4] Kamble M R, Tak H, Patil H A. Amplitude and frequency modulation-based features for detection of replay spoof speech. Speech Commun., 2020; 125: 114−127 doi: 10.1016/j.specom.2020.10.003
[5] Kamble M R, Patil H A. Detection of replay spoof speech using teager energy feature cues. Comput. Speech Lang., 2021; 65: 101140 doi: 10.1016/j.csl.2020.101140
[6] Therattil A, Gupta P, Chodingala P K, et al. Teager energy based-detection of one-point and two-point replay attacks: Towards cross-database generalization. The Speaker and Language Recognition Workshop (Odyssey 2022), Beijing, China, 2022: 47−54
[7] Patil A T, Acharya R, Patil H A, et al. Improving the potential of enhanced Teager energy cepstral coefficients (ETECC) for replay attack detection. Comput. Speech Lang., 2022; 72: 101281 doi: 10.1016/j.csl.2021.101281
[8] Todisco M, Delgado H, Evans N. Constant Q cepstral coefficients: A spoofing countermeasure for automatic speaker verification. Comput. Speech Lang., 2017; 45: 516−535 doi: 10.1016/j.csl.2017.01.001
[9] Alluri K R, Achanta S, Kadiri S R, et al. SFF anti-spoofer: IIIT-H submission for automatic speaker verification spoofing and countermeasures challenge 2017. Interspeech, Stockholm, Sweden, 2017: 107−111
[10] 汤爽, 张二华, 唐振民. 基于小波包的回放语音检测算法. 计算机与数字工程, 2022; 50(2): 238−242 doi: 10.3969/j.issn.1672-9722.2022.02.003
[11] Font R, Espín J M, Cano M J. Experimental analysis of features for replay attack detection-results on the ASVspoof 2017 Challenge. Interspeech, Stockholm, Sweden, 2017: 7−11
[12] Li L, Chen Y, Wang D, et al. A study on replay attack and anti-spoofing for automatic speaker verification. Interspeech, Stockholm, Sweden, 2017: 92−96
[13] Liu M, Wang L, Dang J, et al. Replay attack detection using magnitude and phase information with attention-based adaptive filters. IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 6201−6205
[14] 陈树丽, 张学帅, 张鹏远, 等. 静音掩蔽和频域分段的音频指纹检索算法. 声学学报, 2022; 47(4): 531−540 doi: 10.15949/j.cnki.0371-0025.2022.04.011
[15] Liu M, Wang L, Dang J, et al. Replay attack detection using variable-frequency resolution phase and magnitude features. Comput. Speech Lang., 2021; 66: 101161 doi: 10.1016/j.csl.2020.101161
[16] 郭星辰, 俞一彪. 具有仿冒攻击检测的鲁棒性说话人识别. 计算机科学, 2022; 49(S1): 531−536 doi: 10.11896/jsjkx.210500147
[17] 俞一彪, 袁冬梅, 薛峰. 一种适于说话人识别的非线性频率尺度变换. 声学学报, 2008; 33(5): 450−455 doi: 10.15949/j.cnki.0371-0025.2008.05.014
[18] Xu L, Yang J, You C H, et al. Device features based on linear transformation with parallel training data for replay speech detection. IEEE/ACM Trans. Audio Speech Lang. Process., 2023; 31: 1574−1586 doi: 10.1109/taslp.2023.3267610
[19] 姜涛, 韩纪庆, 郑铁然. 基于高斯混合模型移动因子补偿的说话人识别方法. 声学学报, 2011; 36(6): 658−664 doi: 10.15949/j.cnki.0371-0025.2011.06.009
[20] Delgado H, Todisco M, Sahidullah M, et al. ASVspoof 2017 Version 2.0: Meta-data analysis and baseline enhancements. The Speaker and Language Recognition Workshop (Odyssey 2018), Les Sables d'Olonne, France, 2018: 296−303