[1] |
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11, 22 doi: 10.1016/S1369-7021(07)70349-8
|
[2] |
Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297, 1670 doi: 10.1126/science.1074374
|
[3] |
Inyushkin A V, Taldenkov A N, Ralchenko V G, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B, 2018, 97, 144305 doi: 10.1103/PhysRevB.97.144305
|
[4] |
Kwak T, Lee J, Choi U, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate. Diam Relat Mater, 2021, 114, 108335 doi: 10.1016/j.diamond.2021.108335
|
[5] |
Feng M, Jin P, Meng X, et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area. J Phys D: Appl Phy, 2022, 55, 404005 doi: 10.1088/1361-6463/ac83ce
|
[6] |
Salvadori M, Consoli F, Verona C, et al. Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci Rep, 2021, 11, 3071 doi: 10.1038/s41598-021-82655-w
|
[7] |
Prawer S, Greentree A D. Diamond for quantum computing. Science, 2008, 320, 1601 doi: 10.1126/science.1158340
|
[8] |
Schreck M, Asmussen J, Shikata S, et al. Large-area high-quality single crystal diamond. MRS Bull, 2014, 39, 504 doi: 10.1557/mrs.2014.96
|
[9] |
Arnault J C, Lee K H, Delchevalrie J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes. Diam Relat Mater, 2020, 105, 107768 doi: 10.1016/j.diamond.2020.107768
|
[10] |
Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth. Appl Phys Lett, 2016, 108, 052101 doi: 10.1063/1.4941291
|
[11] |
Kim S W, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on ( $ 11\bar{2}0 $) sapphire substrate. Appl Phys Lett, 2020, 117, 202102 doi: 10.1063/5.0024070
|
[12] |
Kim S W, Takaya R, Hirano S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ( $ 11\bar{2}0 $) misoriented substrate by step-flow mode. Appl Phys Express, 2021, 14, 115501 doi: 10.35848/1882-0786/ac28e7
|
[13] |
Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 2019, 94, 92 doi: 10.1016/j.diamond.2019.01.027
|
[14] |
Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 2017, 7, 44462 doi: 10.1038/srep44462
|
[15] |
Lebedev V, Kustermann J, Engels J, et al. Coalescence as a key process in wafer-scale diamond heteroepitaxy. J Appl Phys, 2024, 135, 145302 doi: 10.1063/5.0189631
|
[16] |
Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett, 2013, 103, 151905 doi: 10.1063/1.4824330
|
[17] |
Aida H, Ihara T, Oshima R, et al. Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir (001)/MgO (001) substrate. Diam Relat Mater, 2023, 136, 110026 doi: 10.1016/j.diamond.2023.110026
|
[18] |
Kasu M, Takaya R, Kim S W. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam Relat Mater, 2022, 126, 109086 doi: 10.1016/j.diamond.2022.109086
|
[19] |
Kimura Y, Ihara T, Ojima T, et al. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam Relat Mater, 2023, 110055 doi: 10.1016/j.diamond.2023.110055
|
[20] |
Qu P, Jin P, Zhou G, et al. Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering. Surf Coat Technol, 2023, 456, 129267 doi: 10.1016/j.surfcoat.2023.129267
|
[21] |
Zhou G, Qu P, Huo X, et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: Growth kinetics and the effects of oxygen. Results Phys, 2023, 47, 106357 doi: 10.1016/j.rinp.2023.106357
|