[1] Tan H W, van Dijken S. Dynamic machine vision with retinomorphic photomemristor-reservoir computing. Nat Commun, 2023, 14, 2169 doi: 10.1038/s41467-023-37886-y
[2] Liu Y Q, Liu D, Gao C S, et al. Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat Commun, 2022, 13, 7917 doi: 10.1038/s41467-022-35628-0
[3] Jiang C P, Xu H H, Yang L, et al. Neuromorphic antennal sensory system. Nat Commun, 2024, 15, 2109 doi: 10.1038/s41467-024-46393-7
[4] Zhou F C, Chai Y. Near-sensor and in-sensor computing. Nat Electron, 2020, 3, 664 doi: 10.1038/s41928-020-00501-9
[5] Mennel L, Symonowicz J, Wachter S, et al. Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020, 579, 62 doi: 10.1038/s41586-020-2038-x
[6] Jang H, Hinton H, Jung W B, et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat Electron, 2022, 5, 519 doi: 10.1038/s41928-022-00819-6
[7] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8, 497 doi: 10.1038/nnano.2013.100
[8] Jayachandran D, Oberoi A, Sebastian A, et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat Electron, 2020, 3, 646 doi: 10.1038/s41928-020-00466-9
[9] Zhang Z F, Zhao X L, Zhang X M, et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat Commun, 2022, 13, 6590 doi: 10.1038/s41467-022-34230-8
[10] Zhou Y, Fu J W, Chen Z R, et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat Electron, 2023, 6, 870 doi: 10.1038/s41928-023-01055-2
[11] Xiang D, Liu T. Extending in-sensor computing from static images to dynamic motions. Nat Electron, 2023, 6, 801 doi: 10.1038/s41928-023-01070-3
[12] Appeltant L, Soriano M C, Van der Sande G, et al. Information processing using a single dynamical node as complex system. Nat Commun, 2011, 2, 468 doi: 10.1038/ncomms1476
[13] Lee H, Lee S, Kim J, et al. Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system. NPJ Flex Electron, 2023, 7, 20 doi: 10.1038/s41528-023-00246-3
[14] Chen J W, Zhou Z, Kim B J, et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat Nanotechnol, 2023, 18, 882 doi: 10.1038/s41565-023-01379-2
[15] Liao F Y, Zhou Z, Kim B J, et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat Electron, 2022, 5, 84 doi: 10.1038/s41928-022-00713-1
[16] Wu Y C, Liu C H, Chen S Y, et al. Extrinsic origin of persistent photoconductivity in monolayer MoS2 field effect transistors. Sci Rep, 2015, 5, 11472 doi: 10.1038/srep11472
[17] George A, Fistul M V, Gruenewald M, et al. Giant persistent photoconductivity in monolayer MoS2 field-effect transistors. NPJ 2D Mater Appl, 2021, 5, 15 doi: 10.1038/s41699-020-00182-0
[18] Van der Sande G, Brunner D, Soriano M C. Advances in photonic reservoir computing. Nanophotonics, 2017, 6, 561 doi: 10.1515/nanoph-2016-0132
[19] Zhong Y N, Tang J S, Li X Y, et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat Commun, 2021, 12, 408 doi: 10.1038/s41467-020-20692-1
[20] Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv Funct Materials, 2012, 22, 1385 doi: 10.1002/adfm.201102111
[21] Choudhary N, Park J, Hwang J Y, et al. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl Mater Interfaces, 2014, 6, 21215 doi: 10.1021/am506198b
[22] Chakraborty B, Matte H S S R, Sood A K, et al. Layer-dependent resonant Raman scattering of a few layer MoS2. J Raman Spectrosc, 2013, 44, 92 doi: 10.1002/jrs.4147
[23] Brown N M D, Cui N Y, McKinley A. An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma. Appl Surf Sci, 1998, 134, 11 doi: 10.1016/S0169-4332(98)00252-9
[24] Jadwiszczak J, O’Callaghan C, Zhou Y B, et al. Oxide-mediated recovery of field-effect mobility in plasma-treated MoS2. Sci Adv, 2018, 4, eaao5031 doi: 10.1126/sciadv.aao5031
[25] Liu K Q, Zhang T, Dang B J, et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat Electron, 2022, 5, 761 doi: 10.1038/s41928-022-00847-2