[1] |
Hu Zhiwen, Chen Lianyun, Li Jun, et al. High-localized cell irradiation at the CAS-LIBB single-particle microbeam[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 244(2): 462-466.
|
[2] |
詹福如, 许明亮, 许永建, 等. 单离子束技术概述[J]. 强激光与粒子束, 2007, 19(11):1913-1917
Zhan Furu, Xu Mingliang, Xu Yongjian, et al. Review of single ion microbeam technology[J]. High Power Laser and Particle Beams, 2007, 19(11): 1913-1917
|
[3] |
Randers-Pehrson G, Geard C R, Johnson G, et al. The Columbia University single-ion microbeam[J]. Radiation Research, 2001, 156(2): 210-214. doi: 10.1667/0033-7587(2001)156[0210:TCUSIM]2.0.CO;2
|
[4] |
Shafirkin A V, Grigoriev Y G, Ushakov I B. More precise determination of the relative biological effectiveness of fast neutrons and accelerated multi-charged ions at low doses for estimation of the risk of injury of brain and lens neurons[J]. Human Physiology, 2020, 46(7): 722-730. doi: 10.1134/S0362119720070130
|
[5] |
Almahwasi A. Low dose hyper-radiosensitivity in normal human cells[J]. Radiation Physics and Chemistry, 2023, 202: 110523. doi: 10.1016/j.radphyschem.2022.110523
|
[6] |
Joshi G S, Joiner M C, Tucker J D. Cytogenetic characterization of low-dose hyper-radiosensitivity in Cobalt-60 irradiated human lymphoblastoid cells[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 770: 69-78. doi: 10.1016/j.mrfmmm.2014.09.006
|
[7] |
Brenner D J, Elliston C D. The potential impact of bystander effects on radiation risks in a mars mission[J]. Radiation Research, 2001, 156(5): 612-617. doi: 10.1667/0033-7587(2001)156[0612:TPIOBE]2.0.CO;2
|
[8] |
Abdelhakm L O, Kandil E I, Mansour S Z, et al. Chrysin encapsulated copper nanoparticles with low dose of gamma radiation elicit tumor cell death through p38 MAPK/NF-κB pathways[J]. Biological Trace Element Research, 2023, 201(11): 5278-5297. doi: 10.1007/s12011-023-03596-1
|
[9] |
Okada M, Okabe A, Uchihori Y, et al. Single extreme low dose/low dose rate irradiation causes alteration in lifespan and genome instability in primary human cells[J]. British Journal of Cancer, 2007, 96(11): 1707-1710. doi: 10.1038/sj.bjc.6603775
|
[10] |
Zhou Hongning, Randers-Pehrson G, Geard C R, et al. Interaction between radiation-induced adaptive response and bystander mutagenesis in mammalian cells[J]. Radiation Research, 2003, 160(5): 512-516. doi: 10.1667/RR3083
|
[11] |
Guo Xiaoying, Sun Jie, Bian Po, et al. Radiation-induced bystander signaling from somatic cells to germ cells in Caenorhabditis elegans[J]. Radiation Research, 2013, 180(3): 268-275. doi: 10.1667/RR3218.1
|
[12] |
Yang Gen, Wu Lijun, Chen Lianyun, et al. Targeted irradiation of shoot apical meristem of Arabidopsis embryos induces long-distance bystander/abscopal effects[J]. Radiation Research, 2007, 167(3): 298-305. doi: 10.1667/RR0710.1
|
[13] |
Li Lu, Wang Lu, Prise K M, et al. Akt/mTOR mediated induction of bystander effect signaling in a nucleus independent manner in irradiated human lung adenocarcinoma epithelial cells[J]. Oncotarget, 2017, 8(11): 18010-18020. doi: 10.18632/oncotarget.14931
|
[14] |
Hu Beiyu, Xu Bingxue, Yun Juanli, et al. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge[J]. Lab on a Chip, 2020, 20(2): 363-372. doi: 10.1039/C9LC00761J
|
[15] |
姚波, 何巧红, 杜文斌, 等. 微流控高通量试样引入技术的研究进展[J]. 色谱, 2009, 27(5):662-666 doi: 10.3321/j.issn:1000-8713.2009.05.018
Yao Bo, He Qiaohong, Du Wenbin, et al. Developments of high-throughput microfluidic sample introduction techniques[J]. Chinese Journal of Chromatography, 2009, 27(5): 662-666 doi: 10.3321/j.issn:1000-8713.2009.05.018
|
[16] |
Simchi M, Riordon J, Wang Yihe, et al. High-throughput sperm DNA analysis at the single-cell and population levels[J]. Analyst, 2023, 148(16): 3748-3757. doi: 10.1039/D3AN00564J
|
[17] |
Buonanno M, Garty G, Grad M, et al. Microbeam irradiation of C. elegans nematode in microfluidic channels[J]. Radiation and Environmental Biophysics, 2013, 52(4): 531-537. doi: 10.1007/s00411-013-0485-6
|
[18] |
Chen Dongwei, Nie Mengyue, Tang Wei, et al. Whole lifecycle observation of single-spore germinated Streptomyces using a nanogap-stabilized microfluidic chip[J]. mLife, 2022, 1(3): 341-349. doi: 10.1002/mlf2.12039
|
[19] |
Zhou Yang, Yu Zhibin, Wu Man, et al. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip[J]. Talanta, 2023, 253: 124044. doi: 10.1016/j.talanta.2022.124044
|
[20] |
Gebreyesus S T, Muneer G, Huang C C, et al. Recent advances in microfluidics for single-cell functional proteomics[J]. Lab on a Chip, 2023, 23(7): 1726-1751. doi: 10.1039/D2LC01096H
|
[21] |
Roper M G. Cellular analysis using microfluidics[J]. Analytical Chemistry, 2016, 88(1): 381-394. doi: 10.1021/acs.analchem.5b04532
|
[22] |
Tkaczyk A H, Tkaczyk E R, Norris T B, et al. Microfluidic droplet consistency monitoring and encapsulated cell detection via laser excitation[J]. Journal of Mechanics in Medicine and Biology, 2011, 11(1): 1-14. doi: 10.1142/S0219519410003617
|
[23] |
Larson A P, Ahlberg H, Folestad S. Semiconductor laser-induced fluorescence detection in picoliter volume flow cells[J]. Applied Optics, 1993, 32(6): 794-805. doi: 10.1364/AO.32.000794
|
[24] |
Zhan Furu, Qi Xuehong, Xu Mingliang, et al. Improvement of the energy stability of the single ion microbeam[J]. Plasma Science and Technology, 2008, 10(2): 250-253. doi: 10.1088/1009-0630/10/2/23
|
[25] |
Xu Mingliang, Xu Yongjian, Zhan Furu, et al. Analysis and optimization of stability of CAS-LIBB single ion microbeam[J]. Plasma Science and Technology, 2008, 10(5): 651-654. doi: 10.1088/1009-0630/10/5/24
|