[1] |
SOLEIMANI F, DOBARADARAN S, DE-LA-TORRE G E, SCHMIDT T C, SAEEDI R. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: a comprehensive systematic review[J]. Science of the Total Environment, 2022, 813: 152 667.
|
[2] |
HABRE R, DORMAN D C, ABBATT J, BAHNFLETH W P, CARTER E, FARMER D, GAWNE-MITTELSTAEDT G, GOLDSTEIN A H, GRASSIAN V H, MORRISON G, PECCIA J, POPPENDIECK D, PRATHER K A, SHIRAIWA M, STAPLETON H M, WILLIAMS M, HARRIES M E. Why indoor chemistry matters: a national academies consensus report[J]. Environmental Science & Technology, 2022, 56(15): 10 560-10 563.
|
[3] |
FAGAN P, EISSENBERG T, JONES D M, COHEN J E, NEZ HENDERSON P, CLANTON M S. The first 10 years: reflecting on opportunities and challenges of the tobacco products scientific advisory committee of the United States food and drug administration[J]. The Journal of Legal Medicine, 2020, 40(3/4): 293 - 320 .
|
[4] |
SCHALLER J P, KELLER D, POGET L, PRATTE P, KAELIN E, McHUGH D, CUDAZZO G, SMART D, TRICKER A R, GAUTIER L, YERLY M, REIS PIRES R, Le BOUHELLEC S, GHOSH D, HOFER I, GARCIA E, VANSCHEEUWIJCK P, MAEDER S. Evaluation of the tobacco heating system 2.2. Part 2: chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol[J]. Regulatory Toxicology and Pharmacology, 2016, 81: S27 - S47 . doi: 10.1016/j.yrtph.2016.10.001
|
[5] |
FORSTER M, FIEBELKORN S, YURTERI C, MARINER D, LIU C, WRIGHT C, McADAM K, MURPHY J, PROCTOR C. Assessment of novel tobacco heating product THP1.0. Part 3: comprehensive chemical characterisation of harmful and potentially harmful aerosol emissions[J]. Regulatory Toxicology and Pharmacology, 2018, 93: 14 - 33 . doi: 10.1016/j.yrtph.2017.10.006
|
[6] |
DAVIS B, WILLIAMS M, TALBOT P. iQOS: evidence of pyrolysis and release of a toxicant from plastic[J]. Tobacco Control, 2019, 28(1): 34 - 41 . doi: 10.1136/tobaccocontrol-2017-054104
|
[7] |
LI X, LUO Y, JIANG X, ZHANG H, ZHU F, HU S, HOU H, HU Q, PANG Y. Chemical analysis and simulated pyrolysis of tobacco heating system 2.2 compared to conventional cigarettes[J]. Nicotine & Tobacco Research, 2019, 21(1): 111 - 118 .
|
[8] |
RAWLINSON C, MARTIN S, FROSINA J, WRIGHT C. Chemical characterisation of aerosols emitted by electronic cigarettes using thermal desorption-gas chromatography-time of flight mass spectrometry[J]. Journal of Chromatography A, 2017, 1 497: 144 - 154 . doi: 10.1016/j.chroma.2017.02.050
|
[9] |
陆怡峰, 李永霞, 张珲姿, 刘鸿, 姚鹤鸣, 郑赛晶, 陈勇. 电感耦合等离子体质谱法同时测定电子烟气溶胶中7种重金属元素[J]. 分析测试学报, 2020, 39(6): 729 - 735 . doi: 10.3969/j.issn.1004-4957.2020.06.005
LU Yifeng, LI Yongxia, ZHANG Huizi, LIU Hong, YAO Heming, ZHENG Saijing, CHEN Yong. Simultaneous determination of heavy metal elements in e-cigarette aerosols by inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2020, 39(6): 729 - 735 (in Chinese). doi: 10.3969/j.issn.1004-4957.2020.06.005
|
[10] |
PETRICK L M, SLEIMAN M, DUBOWSKI Y, GUNDEL L A, DESTAILLATS H. Tobacco smoke aging in the presence of ozone: a room-sized chamber study[J]. Atmospheric Environment, 2011, 45(28): 4 959-4 965.
|
[11] |
BORDUAS N, MURPHY J G, WANG C, Da SILVA G, ABBATT J P D. Gas phase oxidation of nicotine by OH radicals: kinetics, mechanisms, and formation of HNCO[J]. Environmental Science & Technology Letters, 2016, 3(9): 327 - 331 .
|
[12] |
PETRICK L M, SVIDOVSKY A, DUBOWSKI Y. Thirdhand smoke: heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment[J]. Environmental Science & Technology, 2011, 45(1): 328 - 333 .
|
[13] |
SLEIMAN M, DESTAILLATS H, SMITH J D, LIU C L, AHMED M, WILSON K R, GUNDEL L A. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke[J]. Atmospheric Environment, 2010, 44(34): 4 191-4 198.
|
[14] |
SLEIMAN M, GUNDEL L A, PANKOW J F, JACOB P, SINGER B C, DESTAILLATS H. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6 576-6 581.
|
[15] |
WANG C, COLLINS D B, HEMS R F, BORDUAS N, ANTIÑOLO M, ABBATT J P D. Exploring conditions for ultrafine particle formation from oxidation of cigarette smoke in indoor environments[J]. Environmental Science & Technology, 2018, 52(8): 4 623-4 631.
|
[16] |
LIM D H, KIM Y H, SON Y S, JO S H, KIM K H. A simple sampling method for quantification of hazardous volatile organic compounds in mainstream cigarette smoke: method development and prestudy validation[J]. Microchemical Journal, 2022, 180: 107 602.
|
[17] |
SAVAREEAR B, ESCOBAR-ARNANZ J, BROKL M, SAXTON M J, WRIGHT C, LIU C, FOCANT J F. Non-targeted analysis of the particulate phase of heated tobacco product aerosol and cigarette mainstream tobacco smoke by thermal desorption comprehensive two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection[J]. Journal of Chromatography A, 2019, 1 603: 327-337.
|
[18] |
贾春晓, 黄备备, 杨鹏飞, 陈芝飞, 席高磊, 毛多斌. 同位素稀释-气相色谱-质谱联用法分析烟气中性香味成分[J]. 质谱学报, 2019, 40(6): 565 - 574 . doi: 10.7538/zpxb.2018.0151
JIA Chunxiao, HUANG Beibei, YANG Pengfei, CHEN Zhifei, XI Gaolei, MAO Duobin. Neutral aromatic components from cigarette smoke by isotope dilution-GC/MS[J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(6): 565 - 574 (in Chinese). doi: 10.7538/zpxb.2018.0151
|
[19] |
THIELEN A, KLUS H, MÜLLER L. Tobacco smoke: unraveling a controversial subject[J]. Experimental and Toxicologic Pathology, 2008, 60(2/3): 141 - 156 .
|
[20] |
LIU B, LI Y M, WU S B, LI Y H, DENG S S, XIA Z L. Pyrolysis characteristic of tobacco stem studied by py-GC/MS, TG-FTIR, and TG-MS[J]. BioResources, 2012, 8(1): 220 - 230 .
|
[21] |
SHI Q, NELSON D D, McMANUS J B, ZAHNISER M S, PARRISH M E, BAREN R E, SHAFER K H, HARWARD C N. Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis[J]. Analytical Chemistry, 2003, 75(19): 5 180-5 190.
|
[22] |
MITSCHKE S, ADAM T, STREIBEL T, BAKER R R, ZIMMERMANN R. Application of time-of-flight mass spectrometry with laser-based photoionization methods for time-resolved on-line analysis of mainstream cigarette smoke[J]. Analytical Chemistry, 2005, 77(8): 2 288-2 296.
|
[23] |
ADAM T, MITSCHKE S, STREIBEL T, BAKER R R, ZIMMERMANN R. Puff-by-puff resolved characterisation of cigarette mainstream smoke by single photon ionisation (SPI)-time-of-flight mass spectrometry (TOF MS): comparison of the 2R4F research cigarette and pure Burley, Virginia, Oriental and Maryland tobacco cigarettes[J]. Analytica Chimica Acta, 2006, 572(2): 219 - 229 . doi: 10.1016/j.aca.2006.05.043
|
[24] |
ADAM T, McAUGHEY J, McGRATH C, MOCKER C, ZIMMERMANN R. Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke[J]. Analytical and Bioanalytical Chemistry, 2009, 394(4): 1 193-1 203.
|
[25] |
BARSANTI K C, LUO W, ISABELLE L M, PANKOW J F, PEYTON D H. Tobacco smoke particulate matter chemistry by NMR[J]. Magnetic Resonance in Chemistry, 2007, 45(2): 167 - 170 . doi: 10.1002/mrc.1939
|
[26] |
YADAV R, SAOUD K, RASOULI F, HAJALIGOL M, FENNER R. Study of cigarette smoke aerosol using time of flight mass spectrometry[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(1): 17 - 25 . doi: 10.1016/j.jaap.2004.01.004
|
[27] |
WANG X, JIANG Q, LI H, CHEN D. Rapid determination of chemical composition in the particulate matter of cigarette mainstream smoke[J]. Talanta, 2020, 217: 121 060.
|
[28] |
PHARES D J, COLLIER S, ZHENG Z, JUNG H S. In-situ analysis of the gas- and particle-phase in cigarette smoke by chemical ionization TOF-MS[J]. Journal of Aerosol Science, 2017, 106: 132 - 141 . doi: 10.1016/j.jaerosci.2017.01.002
|
[29] |
WEN Z, GU X, TANG X, LI X, PANG Y, HU Q, WANG J, ZHANG L, LIU Y, ZHANG W. Time-resolved online analysis of the gas- and particulate-phase of cigarette smoke generated by a heated tobacco product using vacuum ultraviolet photoionization mass spectrometry[J]. Talanta, 2022, 238: 123 062.
|
[30] |
PAN Y, HU Y, WANG J, YE L, LIU C, ZHU Z. Online characterization of isomeric/isobaric components in the gas phase of mainstream cigarette smoke by tunable synchrotron radiation vacuum ultraviolet photoionization time-of-flight mass spectrometry and photoionization efficiency curve simulation[J]. Analytical Chemistry, 2013, 85(24): 11 993-12 001.
|
[31] |
赵锋, 温作赢, 顾学军, 王健, 唐小锋, 张为俊. 真空紫外光电离质谱在线检测卷烟主流烟气气溶胶中气体和颗粒物的化学成分[J]. 质谱学报, 2023, 44(6): 770 - 779 . doi: 10.7538/zpxb.2023.0036
ZHAO Feng, WEN Zuoying, GU Xuejun, WANG Jian, TANG Xiaofeng, ZHANG Weijun. On-line analysis of chemical components of gas-phase and particulate-phase in cigarette mainstream smoke by vacuum ultraviolet photoionization mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(6): 770 - 779 (in Chinese). doi: 10.7538/zpxb.2023.0036
|
[32] |
CHARLES S M, BATTERMAN S A, JIA C. Composition and emissions of VOCs in main- and side-stream smoke of research cigarettes[J]. Atmospheric Environment, 2007, 41(26): 5 371-5 384.
|
[33] |
DESTAILLATS H, LUNDEN M M, SINGER B C, COLEMAN B K, HODGSON A T, WESCHLER C J, NAZAROFF W W. Indoor secondary pollutants from household product emissions in the presence of ozone: a bench-scale chamber study[J]. Environmental Science & Technology, 2006, 40(14): 4 421-4 428.
|
[34] |
FAN Z, WESCHLER C J, HAN I K, ZHANG J. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions[J]. Atmospheric Environment, 2005, 39(28): 5 171-5 182.
|
[35] |
BENTLEY M C, ALMSTETTER M, ARNDT D, KNORR A, MARTIN E, POSPISIL P, MAEDER S. Comprehensive chemical characterization of the aerosol generated by a heated tobacco product by untargeted screening[J]. Analytical and Bioanalytical Chemistry, 2020, 412(11): 2 675-2 685.
|
[36] |
NAEEM M N M, ZAIN S M S M, NG C, NOH M F M. Chemical constituents in e-cigarette liquids and aerosols[J]. Journal of Environmental Protection, 2020, 11(9): 664 - 681 . doi: 10.4236/jep.2020.119040
|
[37] |
CUNNINGHAM A, McADAM K, THISSEN J, DIGARD H. The evolving e-cigarette: comparative chemical analyses of e-cigarette vapor and cigarette smoke[J]. Frontiers in Toxicology, 2020, 2: 586 674.
|
[38] |
BELL F, RUAN Q N, GOLAN A, HORN P R, AHMED M, LEONE S R, HEAD-GORDON M. Dissociative photoionization of glycerol and its dimer occurs predominantly via a ternary hydrogen-bridged ion-molecule complex[J]. Journal of the American Chemical Society, 2013, 135(38): 14 229-14 239.
|
[39] |
ZHAO F, WEN Z, GU X, ZHANG W, TANG X. Operando gas- and particle-phase measurements of combustion cigarette smoke aerosols by vacuum ultraviolet photoionization mass spectrometry[J]. Journal of Aerosol Science, 2024, 178: 106 358.
|
[40] |
FADEYI M O. Ozone in indoor environments: research progress in the past 15 years[J]. Sustainable Cities and Society, 2015, 18: 78 - 94 . doi: 10.1016/j.scs.2015.05.011
|
[41] |
HUBBARD H F, COLEMAN B K, SARWAR G, CORSI R L. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings[J]. Indoor Air, 2005, 15(6): 432 - 444 . doi: 10.1111/j.1600-0668.2005.00388.x
|
[42] |
DESTAILLATS H, MADDALENA R L, SINGER B C, HODGSON A T, McKONE T E. Indoor pollutants emitted by office equipment: a review of reported data and information needs[J]. Atmospheric Environment, 2008, 42(7): 1 371-1 388.
|
[43] |
FUOCO F C, BUONANNO G, STABILE L, VIGO P. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes[J]. Environmental Pollution, 2014, 184: 523 - 529 . doi: 10.1016/j.envpol.2013.10.010
|
[44] |
MIKHEEV V B, IVANOV A, LUCAS E A, SOUTH P L, COLIJN H O, CLARK P I. Aerosol size distribution measurement of electronic cigarette emissions using combined differential mobility and inertial impaction methods: Smoking machine and puff topography influence[J]. Aerosol Science and Technology, 2018, 52(11): 1 233-1 248.
|
[45] |
PAPAEFSTATHIOU E, BEZANTAKOS S, STYLIANOU M, BISKOS G, AGAPIOU A. Comparison of particle size distributions and volatile organic compounds exhaled by e-cigarette and cigarette users[J]. Journal of Aerosol Science, 2020, 141: 105 487.
|