| [1] |
张国辉, 杨晓玲, 吴小毛, 李荣玉, 李明. 脱氧雪腐镰刀菌烯醇(DON)的毒素污染分析及防控研究进展[J]. 农业灾害研究, 2022, 12(9): 22 - 24 .
ZHANG Guohui, YANG Xiaoling, WU Xiaomao, LI Rongyu, LI Ming. Analysis of toxin contamination and research progress on prevention and control of deoxynivalenol (DON)[J]. Journal of Agricultural Catastrophology, 2022, 12(9): 22 - 24 (in Chinese).
|
| [2] |
GOSWAMI R S, KISTLER H C. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice[J]. Phytopathology, 2005, 95(12): 1 397-1 404.
|
| [3] |
WARD T J, BIELAWSKI J P, KISTLER H C, SULLIVAN E, O’DONNELL K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(14): 9 278-9 283.
|
| [4] |
PALACIOS S A, ERAZO J G, CIASCA B, LATTANZIO V M T, REYNOSO M M, FARNOCHI M C, TORRES A M. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina[J]. Food Chemistry, 2017, 230: 728 - 734 . doi: 10.1016/j.foodchem.2017.03.085
|
| [5] |
马忠华, 陈云, 尹燕妮. 小麦赤霉病流行成灾原因分析及防控对策探讨[J]. 中国科学基金, 2020, 34(4): 464 - 469 .
MA Zhonghua, CHEN Yun, YIN Yanni. Epidemiological analysis and management strategies of fusarium head blight of wheat[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(4): 464 - 469 (in Chinese).
|
| [6] |
CHEN Y, KISTLER H C, MA Z. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management[J]. Annual Review of Phytopathology, 2019, 57: 15 - 39 . doi: 10.1146/annurev-phyto-082718-100318
|
| [7] |
HOLANDA D M, KIM S W. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol[J]. Toxins, 2021, 13(2): 171 . doi: 10.3390/toxins13020171
|
| [8] |
GHAREEB K, AWAD W A, BÖHM J, ZEBELI Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine[J]. Journal of Applied Toxicology, 2015, 35(4): 327 - 337 . doi: 10.1002/jat.3083
|
| [9] |
TU Y, LIU S, CAI P, SHAN T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22(5): 3951 - 3983 . doi: 10.1111/1541-4337.13203
|
| [10] |
HUANG P, YU X, LIU H, DING M, WANG Z, XU J R, JIANG C. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum[J]. Nature Communications, 2024, 15(1): 1216 . doi: 10.1038/s41467-024-45502-w
|
| [11] |
魏润蕴, 李文艳. 小麦中雪腐镰刀菌烯醇(NIV)和脱氧雪腐镰刀菌烯醇(DON)的薄层色谱测定方法[J]. 中国食品卫生杂志, 1994, 6(1): 19 - 22 .
WEI Runyun, LI Wenyan. Thin layer chromatography method for the determination of NIV and DON in wheat[J]. Chinese Journal of Food Hygiene, 1994, 6(1): 19 - 22 (in Chinses).
|
| [12] |
SIMOES C T, VIDAL J K, SILVA C D R D, SARTURI J A, LABER I F, MADALOSSO T, MALLMANN C A. A two-year study on the occurrence and concentration of mycotoxins in corn varieties with different endosperm textures[J]. Journal of the Science of Food and Agriculture, 2023, 103(14): 7 199-7 206.
|
| [13] |
WANG R, LI M, JIN R, LIU Y, GUAN E, MOHAMED S R, BIAN K. Interactions among the composition changes in fungal communities and the main mycotoxins in simulated stored wheat grains[J]. Journal of the Science of Food and Agriculture, 2024, 104(1): 373 - 382 . doi: 10.1002/jsfa.12928
|
| [14] |
LI Y, SHI W, SHEN J, ZHANG S, CHENG L, WANG Z. Development of a rapid competitive indirect ELISA procedure for the determination of deoxynivalenol in cereals[J]. Food and Agricultural Immunology, 2012, 23(1): 41 - 49 . doi: 10.1080/09540105.2011.589046
|
| [15] |
HAN L, LI Y T, JIANG J Q, LI R F, FAN G Y, LV J M, ZHOU Y, ZHANG W J, WANG Z L. Development of a direct competitive ELISA kit for detecting deoxynivalenol contamination in wheat[J]. Molecules, 2019, 25(1): 50 . doi: 10.3390/molecules25010050
|
| [16] |
TIAN M, XIE W, ZHANG T, LIU Y, LU Z, LI C M, LIU Y. A sensitive lateral flow immunochromatographic strip with Prussian blue nanoparticles mediated signal generation and cascade amplification[J]. Sensors and Actuators B: Chemical, 2020, 309: 127 728.
|
| [17] |
LIU Z, HUA Q, WANG J, LIANG Z, LI J, WU J, SHEN X, LEI H, LI X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals[J]. Biosensors and Bioelectronics, 2020, 158: 112 178.
|
| [18] |
LI J, YAN H, TAN X, LU Z, HAN H. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection[J]. Analytical Chemistry, 2019, 91(6): 3 885-3 892.
|
| [19] |
HE X, ZHAO T, SHEN F, LIU Q, FANG Y, HU Q. Online detection of naturally DON contaminated wheat grains from China using Vis-NIR spectroscopy and computer vision[J]. Biosystems Engineering, 2021, 201: 1 - 10 . doi: 10.1016/j.biosystemseng.2020.11.001
|
| [20] |
WEI K, SUN J, GAO Q, YANG X, YE Y, JI J, SUN X. 3D “honeycomb” cell/carbon nanofiber/gelatin methacryloyl (GelMA) modified screen-printed electrode for electrochemical assessment of the combined toxicity of deoxynivalenol family mycotoxins[J]. Bioelectrochemistry, 2021, 139: 107 743.
|
| [21] |
WEI T, REN P, HUANG L, OUYANG Z, WANG Z, KONG X, LI T, YIN Y, WU Y, HE Q. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance[J]. Food Chemistry, 2019, 300: 125 176.
|
| [22] |
THEISEN S, BERGER S. Screening of epoxide hydrolase producing microorganisms for biotransformation of deoxynivalenol[J]. Mycotoxin Research, 2005, 21(1): 71 - 73 . doi: 10.1007/BF02954823
|
| [23] |
JIANG J, YUN Y, FU J, SHIM W B, MA Z. Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum[J]. Molecular Plant Pathology, 2011, 12(5): 425 - 436 . doi: 10.1111/j.1364-3703.2010.00684.x
|
| [24] |
DYER R B, PLATTNER R D, KENDRA D F, BROWN D W. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro[J]. Journal of Agricultural and Food Chemistry, 2005, 53(23): 9 281-9 287.
|
| [25] |
JIANG C, ZHANG C, WU C, SUN P, HOU R, LIU H, WANG C, XU J R. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum[J]. Environmental Microbiology, 2016, 18(11): 3 689-3 701.
|
| [26] |
CUOMO C A, GÜLDENER U, XU J R, TRAIL F, TURGEON B G, Di PIETRO A, WALTON J D, MA L J, BAKER S E, REP M, ADAM G, ANTONIW J, BALDWIN T, CALVO S, CHANG Y L, DECAPRIO D, GALE L R, GNERRE S, GOSWAMI R S, HAMMOND-KOSACK K, HARRIS L J, HILBURN K, KENNELL J C, KROKEN S, MAGNUSON J K, MANNHAUPT G, MAUCELI E, MEWES H W, MITTERBAUER R, MUEHLBAUER G, MÜNSTERKÖTTER M, NELSON D, O’DONNELL K, OUELLET T, QI W, QUESNEVILLE H, RONCERO M I G, SEONG K Y, TETKO I V, URBAN M, WAALWIJK C, WARD T J, YAO J, BIRREN B W, KISTLER H C. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization[J]. Science, 2007, 317(5 843): 1 400-1 402.
|
| [27] |
PROCTOR R H, HOHN T M, McCORMICK S P. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene[J]. Molecular Plant-Microbe Interactions, 1995, 8(4): 593 - 601 . doi: 10.1094/MPMI-8-0593
|
| [28] |
DUAN K, SHEN Q, WANG Y, XIANG P, SHI Y, YANG C, JIANG C, WANG G, XU J R, ZHANG X. Herbicide 2,4-dichlorophenoxyacetic acid interferes with MAP kinase signaling in Fusarium graminearum and is inhibitory to fungal growth and pathogenesis[J]. Stress Biology, 2023, 3(1): 31 . doi: 10.1007/s44154-023-00109-x
|