[1] |
Yang Y, Gao W 2019 Wearable and flexible electronics for continuous molecular monitoring Chem. Soc. Rev. 48 1465-91 doi: 10.1039/C7CS00730B
|
[2] |
Tricoli A, Nasiri N, De S 2017 Wearable and miniaturized sensor technologies for personalized and preventive medicine Adv. Funct. Mater. 27 1605271 doi: 10.1002/adfm.201605271
|
[3] |
Dunn J, Runge R, Snyder M 2018 Wearables and the medical revolution Pers. Med. 15 429-48 doi: 10.2217/pme-2018-0044
|
[4] |
Bonato P 2010 Wearable sensors and systems IEEE Eng. Med. Biol. Mag. 29 25-36 doi: 10.1109/MEMB.2010.936554
|
[5] |
Dong R, et al 2024 Stretchable, self-rolled, microfluidic electronics enable conformable neural interfaces of brain and vagus neuromodulation ACS Nano 18 1702-13 doi: 10.1021/acsnano.3c10028
|
[6] |
Nightingale A M, Leong C L, Burnish R A, Hassan S-U, Zhang Y, Clough G F, Boutelle M G, Voegeli D, Niu X 2019 Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor Nat. Commun. 10 2741 doi: 10.1038/s41467-019-10401-y
|
[7] |
Zhong B, et al 2024 Interindividual-and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism Nat. Commun. 15 624 doi: 10.1038/s41467-024-44751-z
|
[8] |
Li F, Xue H, Lin X, Zhao H, Zhang T 2022 Wearable temperature sensor with high resolution for skin temperature monitoring ACS Appl. Mater. Interfaces 14 43844-52 doi: 10.1021/acsami.2c15687
|
[9] |
Kwon K, et al 2021 An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time Nat. Electron. 4 302-12 doi: 10.1038/s41928-021-00556-2
|
[10] |
Gao W, et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature 529 509-14 doi: 10.1038/nature16521
|
[11] |
Pu Z, Zhang X, Yu H, Tu J, Chen H, Liu Y, Su X, Wang R, Zhang L, Li D 2021 A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring Sci. Adv. 7 eabd0199 doi: 10.1126/sciadv.abd0199
|
[12] |
Luan H, et al 2021 Complex 3D microfluidic architectures formed by mechanically guided compressive buckling Sci. Adv. 7 eabj3686 doi: 10.1126/sciadv.abj3686
|
[13] |
Chung H U, et al 2020 Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units Nat. Med. 26 418-29 doi: 10.1038/s41591-020-0792-9
|
[14] |
Romano C, Schena E, Formica D, Massaroni C 2022 Comparison between chest-worn accelerometer and gyroscope performance for heart rate and respiratory rate monitoring Biosensors 12 834 doi: 10.3390/bios12100834
|
[15] |
Zhu P, Peng H, Rwei A Y 2022 Flexible, wearable biosensors for digital health Med. Novel Technol. Devices 14 100118 doi: 10.1016/j.medntd.2022.100118
|
[16] |
Tang L, Yang J, Wang Y, Deng R 2023 Recent advances in cardiovascular disease biosensors and monitoring technologies ACS Sens. 8 956-73 doi: 10.1021/acssensors.2c02311
|
[17] |
Shetti N P, Mishra A, Basu S, Mascarenhas R J, Kakarla R R, Aminabhavi T M 2020 Skin-patchable electrodes for biosensor applications: a review ACS Biomater. Sci. Eng. 6 1823-35 doi: 10.1021/acsbiomaterials.9b01659
|
[18] |
Zini M, Baù M, Nastro A, Ferrari M, Ferrari V 2023 Flexible passive sensor patch with contactless readout for measurement of human body temperature Biosensors 13 572 doi: 10.3390/bios13060572
|
[19] |
Su Y, et al 2020 Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review Nanoscale Res. Lett. 15 1-34 doi: 10.1186/s11671-020-03428-4
|
[20] |
Rachim V P, Chung W-Y 2019 Multimodal wrist biosensor for wearable cuff-less blood pressure monitoring system Sci. Rep. 9 7947 doi: 10.1038/s41598-019-44348-3
|
[21] |
Crepaldi P C, Pimenta T C, Moreno R L, Rodriguez E C 2011 A low power CMOS voltage regulator for a wireless blood pressure biosensor IEEE Trans. Instrum. Meas. 61 729-39 doi: 10.1109/TIM.2011.2172121
|
[22] |
Phan D T, Phan T T V, Huynh T C, Park S, Choi J, Oh J 2022 Noninvasive, wearable multi biosensors for continuous, long-term monitoring of blood pressure via internet of things applications Comput. Electr. Eng. 102 108187 doi: 10.1016/j.compeleceng.2022.108187
|
[23] |
Wu C-H, Ma H J H, Baessler P, Balanay R K, Ray T R 2023 Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis Sci. Adv. 9 eadg4272 doi: 10.1126/sciadv.adg4272
|
[24] |
Ma X, et al 2023 A monolithically integrated in-textile wristband for wireless epidermal biosensing Sci. Adv. 9 eadj2763 doi: 10.1126/sciadv.adj2763
|
[25] |
Wang L, Wang L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H 2018 Weaving sensing fibers into electrochemical fabric for realtime health monitoring Adv. Funct. Mater. 28 1804456 doi: 10.1002/adfm.201804456
|
[26] |
Yang D S, Ghaffari R, Rogers J A 2023 Sweat as a diagnostic biofluid Science 379 760-1 doi: 10.1126/science.abq5916
|
[27] |
Li R, Nie B, Digiglio P, Pan T 2014 Microflotronics: a flexible, transparent, pressuresensitive microfluidic film Adv. Funct. Mater. 24 6195-203 doi: 10.1002/adfm.201401527
|
[28] |
Gao B, Liao J, Guo M, Liu H, He B, Gu Z 2019 Biomimetic metastructured electromicrofluidics Adv. Funct. Mater. 29 1906745 doi: 10.1002/adfm.201906745
|
[29] |
Zhang B, et al 2024 A three-dimensional liquid diode for soft, integrated permeable electronics Nature 628 84-92 doi: 10.1038/s41586-024-07161-1
|
[30] |
Zhang K, et al 2024 Design and fabrication of wearable electronic textiles using twisted fiber-based threads Nat. Protocols 19 1-33 doi: 10.1038/s41596-024-00956-6
|
[31] |
Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H 2020 Application challenges in fiber and textile electronics Adv. Mater. 32 1901971 doi: 10.1002/adma.201901971
|
[32] |
Yu L, Yeo J C, Soon R H, Yeo T, Lee H H, Lim C T 2018 Highly stretchable, weavable, and washable piezoresistive microfiber sensors ACS Appl. Mater. Interfaces 10 12773-80 doi: 10.1021/acsami.7b19823
|
[33] |
Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M 2014 Fiberbased wearable electronics: a review of materials, fabrication, devices, and applications Adv. Mater. 26 5310-36 doi: 10.1002/adma.201400633
|
[34] |
Ye L, et al 2024 A rechargeable calcium-oxygen battery that operates at room temperature Nature 626 313-8 doi: 10.1038/s41586-023-06949-x
|
[35] |
Hu X, et al 2024 Wearable and regenerable electrochemical fabric sensing system based on molecularly imprinted polymers for realtime stress management Adv. Funct. Mater. 34 2312897 doi: 10.1002/adfm.202312897
|
[36] |
Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y 2019 Advanced carbon for flexible and wearable electronics Adv. Mater. 31 1801072 doi: 10.1002/adma.201801072
|
[37] |
He H, Qin Y, Zhu Z, Jiang Q, Ouyang S, Wan Y, Qu X, Xu J, Yu Z 2023 Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing Nano-Micro Lett. 15 226 doi: 10.1007/s40820-023-01200-8
|
[38] |
Yin J, et al 2023 Smart textiles for self-powered biomonitoring Med-X 1 3 doi: 10.1007/s44258-023-00001-3
|
[39] |
Li J H, Chen J H, Xu F 2018 Sensitive and wearable optical microfiber sensor for human health monitoring Adv. Mater. Technol. 3 1800296 doi: 10.1002/admt.201800296
|
[40] |
Chen J, He T, Du Z, Lee C 2023 Review of textile-based wearable electronics: from the structure of the multi-level hierarchy textiles Nano Energy 117 108898 doi: 10.1016/j.nanoen.2023.108898
|
[41] |
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J 2023 Conductive fibers for biomedical applications Bioact. Mater. 22 343-64 doi: 10.1016/j.bioactmat.2022.10.014
|
[42] |
Liang H, Wang Y, Kan L, Xu K, Dong T, Wang W, Gao B, Jiang C 2022 Wearable and multifunctional self-mixing microfiber sensor for human health monitoring IEEE Sens. J. 23 2122-7 doi: 10.1109/JSEN.2022.3225196
|
[43] |
Yang W, et al 2024 Single body-coupled fiber enables chipless textile electronics Science 384 74-81 doi: 10.1126/science.adk3755
|
[44] |
Shi X, et al 2021 Large-area display textiles integrated with functional systems Nature 591 240-5 doi: 10.1038/s41586-021-03295-8
|
[45] |
He J, et al 2021 Scalable production of high-performing woven lithium-ion fibre batteries Nature 597 57-63 doi: 10.1038/s41586-021-03772-0
|
[46] |
He Q, Wang Z, Wang Y, Wang Z, Li C, Annapooranan R, Zeng J, Chen R, Cai S 2021 Electrospun liquid crystal elastomer microfiber actuator Sci. Robot. 6 eabi9704 doi: 10.1126/scirobotics.abi9704
|
[47] |
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y 2023 Tailoring micro/nano-fibers for biomedical applications Bioact. Mater. 19 328-47 doi: 10.1016/j.bioactmat.2022.04.016
|
[48] |
Xu Z, Wu M, Ye Q, Chen D, Liu K, Bai H 2022 Spinning from nature: engineered preparation and application of high-performance bio-based fibers Engineering 14 100-12 doi: 10.1016/j.eng.2021.06.030
|
[49] |
Liu X, et al 2024 Magnetic soft microfiberbots for robotic embolization Sci. Robot. 9 eadh2479 doi: 10.1126/scirobotics.adh2479
|
[50] |
He Q, Wang Z, Yan Y, Zheng J, Cai S 2016 Polymer nanofiber reinforced double network gel composite: strong, tough and transparent Extreme Mech. Lett. 9 165-70 doi: 10.1016/j.eml.2016.06.004
|
[51] |
Kwon I K, Kidoaki S, Matsuda T 2005 Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential Biomaterials 26 3929-39 doi: 10.1016/j.biomaterials.2004.10.007
|
[52] |
Du X Y, Li Q, Wu G, Chen S 2019 Multifunctional micro/nanoscale fibers based on microfluidic spinning technology Adv. Mater. 31 1903733 doi: 10.1002/adma.201903733
|
[53] |
Yu Y, Shang L, Guo J, Wang J, Zhao Y 2018 Design of capillary microfluidics for spinning cell-laden microfibers Nat. Protocols 13 2557-79 doi: 10.1038/s41596-018-0051-4
|
[54] |
Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y 2019 Spinning and applications of bioinspired fiber systems ACS Nano 13 2749-72 doi: 10.1021/acsnano.8b09651
|
[55] |
Xie R, Xu P, Liu Y, Li L, Luo G, Ding M, Liang Q 2018 Necklacelike microfibers with variable knots and perfusable channels fabricated by an oilfree microfluidic spinning process Adv. Mater. 30 1705082 doi: 10.1002/adma.201705082
|
[56] |
Wu R, Kim T 2021 Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics Lab Chip 21 1217-40 doi: 10.1039/D0LC01208D
|
[57] |
Yang C, et al 2024 Flexible liquid-diode microtubes from multimodal microfluidics Proc. Natl. Acad. Sci. 121 e2402331121 doi: 10.1073/pnas.2402331121
|
[58] |
Guo J, et al 2021 Microfluidics for flexible electronics Mater. Today 44 105-35 doi: 10.1016/j.mattod.2020.08.017
|
[59] |
Xiao Y, et al 2023 Strong and tough biofibers designed by dual crosslinking for sutures Adv. Funct. Mater. 34 2313131 doi: 10.1002/adfm.202313131
|
[60] |
Ghahremani Honarvar M, Latifi M 2017 Overview of wearable electronics and smart textiles J. Text. Inst. 108 631-52 doi: 10.1080/00405000.2016.1177870
|
[61] |
Weigel N, Li Y, Thiele J, Fery A 2023 From microfluidics to hierarchical hydrogel materials Curr. Opin. Colloid Interface Sci. 64 101673 doi: 10.1016/j.cocis.2022.101673
|
[62] |
Liu Z, et al 2015 Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles Science 349 400-4 doi: 10.1126/science.aaa7952
|
[63] |
Shi Y, Wei X, Wang K, He D, Yuan Z, Xu J, Wu Z, Wang Z L 2021 Integrated all-fiber electronic skin toward self-powered sensing sports systems ACS Appl. Mater. Interfaces 13 50329-37 doi: 10.1021/acsami.1c13420
|
[64] |
Kang M, Kim T-W 2021 Recent advances in fiber-shaped electronic devices for wearable applications Appl. Sci. 11 6131 doi: 10.3390/app11136131
|
[65] |
Morimoto Y, Kiyosawa M, Takeuchi S 2018 Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices Sens. Actuators B 274 491-500 doi: 10.1016/j.snb.2018.07.151
|
[66] |
Nunes J, Tsai S S H, Wan J, Stone H A 2013 Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis J. Phys. D: Appl. Phys. 46 114002 doi: 10.1088/0022-3727/46/11/114002
|
[67] |
Zhu P, Wang L 2022 Microfluidics-Enabled Soft ManufactureSpringer
|
[68] |
Shang L, Cheng Y, Zhao Y 2017 Emerging droplet microfluidics Chem. Rev. 117 7964-8040 doi: 10.1021/acs.chemrev.6b00848
|
[69] |
Ding T, Chan K H, Zhou Y, Wang X-Q, Cheng Y, Li T, Ho G W 2020 Scalable thermoelectric fibers for multifunctional textile-electronics Nat. Commun. 11 6006 doi: 10.1038/s41467-020-19867-7
|
[70] |
Lu H, et al 2024 Intelligent perceptual textiles based on ionic-conductive and strong silk fibers Nat. Commun. 15 3289 doi: 10.1038/s41467-024-47665-y
|
[71] |
Chen Q-L, Wu X, Cheng H, Li Q, Chen S 2019 Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors Nanoscale Adv. 1 3614-20 doi: 10.1039/C9NA00181F
|
[72] |
Golecki H M, Yuan H, Glavin C, Potter B, Badrossamay M R, Goss J A, Phillips M D, Parker K K 2014 Effect of solvent evaporation on fiber morphology in rotary jet spinning Langmuir 30 13369-74 doi: 10.1021/la5023104
|
[73] |
Yeh C-H, Lin P-W, Lin Y-C 2010 Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures Microfluid. Nanofluidics 8 115-21 doi: 10.1007/s10404-009-0485-7
|
[74] |
Song Y, Yu X Q, Chen S 2024 Recent advances in microfluidic fiberspinning chemistry J. Polym. Sci. 62 447-62 doi: 10.1002/pol.20230527
|
[75] |
Khan M, et al 2021 A study on microfluidic spinning technology (MST) used for micro fibre fabrication Adv. Res. Text. Eng. 6 1065 doi: 10.26420/advrestexteng.2021.1065
|
[76] |
Xu F, Wang S, Cao C, Ma W, Zhang X, Du J, Sun W, Ma Q 2022 Microfluidic generation of multifunctional core-shell microfibers promote wound healing Colloids Surf. B 219 112842 doi: 10.1016/j.colsurfb.2022.112842
|
[77] |
Ding X, Zhuge W, Zhang Y, Ding S, Wang J, Zhou G 2023 Microfluidic generation of bioinspired core-shell structured microfibers for cultured meat Chem. Eng. J. 478 147467 doi: 10.1016/j.cej.2023.147467
|
[78] |
Meng Z-J, Wang W, Xie R, Ju X-J, Liu Z, Chu L-Y 2016 Microfluidic generation of hollow Ca-alginate microfibers Lab Chip 16 2673-81 doi: 10.1039/c6lc00640j
|
[79] |
Pham U H, Hanif M, Asthana A, Iqbal S M 2015 A microfluidic device approach to generate hollow alginate microfibers with controlled wall thickness and inner diameter J. Appl. Phys. 117 214703 doi: 10.1063/1.4919361
|
[80] |
Tian Y, Wang Z, Wang L 2021 Hollow fibers: from fabrication to applications Chem. Commun. 57 9166-77 doi: 10.1039/D1CC02991F
|
[81] |
Gao C, Wang X, Du Q, Tang J, Jiang J 2019 Generation of perfusable hollow calcium alginate microfibers with a double co-axial flow capillary microfluidic device Biomicrofluidics 13 064108 doi: 10.1063/1.5116225
|
[82] |
Liu H, Wang Y, Yu Y, Chen W, Jiang L, Qin J 2019 Simple fabrication of inner chitosancoated alginate hollow microfiber with higher stability J. Biomed. Mater. Res. B 107 2527-36 doi: 10.1002/jbm.b.34343
|
[83] |
Ranjan V D, Zeng P, Li B, Zhang Y 2020 In vitro cell culture in hollow microfibers with porous structures Biomater. Sci. 8 2175-88 doi: 10.1039/C9BM01986C
|
[84] |
Nguyen T P T, Tran B M, Lee N Y 2018 Microfluidic approach for the fabrication of cell-laden hollow fibers for endothelial barrier research J. Mater. Chem. B 6 6057-66 doi: 10.1039/C8TB02031K
|
[85] |
Cheng Y, Yu Y, Fu F, Wang J, Shang L, Gu Z, Zhao Y 2016 Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques ACS Appl. Mater. Interfaces 8 1080-6 doi: 10.1021/acsami.5b11445
|
[86] |
Ma W, Liu Y, Ling S, Chen Z, Xu J 2023 Generation of helical multi-functional microfiber motors based on modified microfluidic spinning method Chem. Eng. Sci. 282 119339 doi: 10.1016/j.ces.2023.119339
|
[87] |
Jia L, Han F, Yang H, Turnbull G, Wang J, Clarke J, Shu W, Guo M, Li B 2019 Microfluidic fabrication of biomimetic helical hydrogel microfibers for bloodvesselonachip applications Adv. Healthcare Mater. 8 1900435 doi: 10.1002/adhm.201900435
|
[88] |
Wang Y, Wang Z, Sun H, Lyu T, Ma X, Guo J, Tian Y 2024 Multi-functional nano-doped hollow fiber from microfluidics for sensors and micromotors Biosensors 14 186 doi: 10.3390/bios14040186
|
[89] |
Shao L, Gao Q, Zhao H, Xie C, Fu J, Liu Z, Xiang M, He Y 2018 Fiberbased mini tissue with morphologycontrollable GelMA microfibers Small 14 1802187 doi: 10.1002/smll.201802187
|
[90] |
Zhu P, Tang X, Wang L 2016 Droplet generation in co-flow microfluidic channels with vibration Microfluid. Nanofluidics 20 1-10 doi: 10.1007/s10404-016-1717-2
|
[91] |
Zhu P, Wang L 2017 Passive and active droplet generation with microfluidics: a review Lab Chip 17 34-75 doi: 10.1039/C6LC01018K
|
[92] |
Yang C, Yu Y, Zhao Y, Shang L 2023 Bioinspired jellyfish microparticles from microfluidics Research 6 0034 doi: 10.34133/research.0034
|
[93] |
Mak S Y, Li Z, Frere A, Chan T C, Shum H C 2014 Musical interfaces: visualization and reconstruction of music with a microfluidic two-phase flow Sci. Rep. 4 6675 doi: 10.1038/srep06675
|
[94] |
Li Z, Mak S Y, Sauret A, Shum H C 2014 Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy Lab Chip 14 744-9 doi: 10.1039/c3lc51176f
|
[95] |
Yang C, Yu Y, Shang L, Zhao Y 2024 Flexible hemline-shaped microfibers for liquid transport Nat. Chem. Eng. 1 87-96 doi: 10.1038/s44286-023-00001-5
|
[96] |
Yang C, Yu Y, Wang X, Shang L, Zhao Y 2022 Programmable knot microfibers from piezoelectric microfluidics Small 18 2104309 doi: 10.1002/smll.202104309
|
[97] |
Yang C, Yu Y, Wang X, Zu Y, Zhao Y, Shang L 2023 Bioinspired stimuli-responsive spindle-knotted fibers for droplet manipulation Chem. Eng. J. 451 138669 doi: 10.1016/j.cej.2022.138669
|
[98] |
Guo J, Yu Y, Zhang H, Sun L, Zhao Y 2021 Elastic MXene hydrogel microfiber-derived electronic skin for joint monitoring ACS Appl. Mater. Interfaces 13 47800-6 doi: 10.1021/acsami.1c10311
|
[99] |
Lan L, Jiang C, Yao Y, Ping J, Ying Y 2021 A stretchable and conductive fiber for multifunctional sensing and energy harvesting Nano Energy 84 105954 doi: 10.1016/j.nanoen.2021.105954
|
[100] |
Peng L, Liu Y, Gong J, Zhang K, Ma J 2017 Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics RSC Adv. 7 19243-9 doi: 10.1039/C7RA01750B
|
[101] |
Tong Y L, Xu B, Du X-F, Cheng H-Y, Wang C-F, Wu G, Chen S 2018 Microfluidicspinningdirected conductive fibers toward flexible microsupercapacitors Macromol. Mater. Eng. 303 1700664 doi: 10.1002/mame.201700664
|
[102] |
Wang J, Qi Y, Gui Y, Wang C, Wu Y, Yao J, Wang J 2024 Ultrastretchable Eskin based on conductive hydrogel microfibers for wearable sensors Small 20 2305951 doi: 10.1002/smll.202305951
|
[103] |
Yu Y, Guo J, Zhang H, Wang X, Yang C, Zhao Y 2022 Shear-flow-induced graphene coating microfibers from microfluidic spinning Innovation 3 100209 doi: 10.1016/j.xinn.2022.100209
|
[104] |
Fan W, et al 2023 An antisweat interference and highly sensitive temperature sensor based on Poly (3, 4-ethylenedioxythiophene)-Poly (styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature ACS Nano 17 21073-82 doi: 10.1021/acsnano.3c04246
|
[105] |
Zhou J, Tian G, Jin G, Xin Y, Tao R, Lubineau G 2020 Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor Adv. Funct. Mater. 30 1907316 doi: 10.1002/adfm.201907316
|
[106] |
Guo J, Yu Y, Wang H, Zhang H, Zhang X, Zhao Y 2019 Conductive polymer hydrogel microfibers from multiflow microfluidics Small 15 1805162 doi: 10.1002/smll.201805162
|
[107] |
Yu Y, Guo J, Ma B, Zhang D, Zhao Y 2020 Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics Sci. Bull. 65 1752-9 doi: 10.1016/j.scib.2020.06.002
|
[108] |
Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P 2021 Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing Sci. Adv. 7 eabg4041 doi: 10.1126/sciadv.abg4041
|
[109] |
Guo J, Yu Y, Sun L, Zhang Z, Zhao Y, Chai R, Shi K 2020 Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor Chem. Eng. J. 397 125517 doi: 10.1016/j.cej.2020.125517
|
[110] |
Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y 2017 Bioinspired helical microfibers from microfluidics Adv. Mater. 29 1605765 doi: 10.1002/adma.201605765
|
[111] |
Guo J, Yu Y, Zhang D, Zhang H, Zhao Y 2021 Morphological hydrogel microfibers with MXene encapsulation for electronic skin Research 2021 7065907 doi: 10.34133/2021/7065907
|
[112] |
Hui Y, Yao Y, Qian Q, Luo J, Chen H, Qiao Z, Yu Y, Tao L, Zhou N 2022 Three-dimensional printing of soft hydrogel electronics Nat. Electron. 5 893-903 doi: 10.1038/s41928-022-00887-8
|
[113] |
Shin S-J, Park J-Y, Lee J-Y, Park H, Park Y-D, Lee K-B, Whang C-M, Lee S-H 2007 “On the fly” continuous generation of alginate fibers using a microfluidic device Langmuir 23 9104-8 doi: 10.1021/la700818q
|
[114] |
Cuadros T R, Skurtys O, Aguilera J M 2012 Mechanical properties of calcium alginate fibers produced with a microfluidic device Carbohydrate Polym. 89 1198-206 doi: 10.1016/j.carbpol.2012.03.094
|
[115] |
Sun T, Li X, Shi Q, Wang H, Huang Q, Fukuda T 2018 Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering Gels 4 38 doi: 10.3390/gels4020038
|
[116] |
Yamada M, Seki M 2018 Multiphase microfluidic processes to produce alginate-based microparticles and fibers J. Chem. Eng. Japan 51 318-30 doi: 10.1252/jcej.17we328
|
[117] |
Su J, Zheng Y, Wu H 2009 Generation of alginate microfibers with a roller-assisted microfluidic system Lab Chip 9 996-1001 doi: 10.1039/B813518E
|
[118] |
Wang X, Jia J, Niu M, Li W, Zhao Y 2023 Living Chinese herbal scaffolds from microfluidic bioprinting for wound healing Research 6 0138 doi: 10.34133/research.0138
|
[119] |
Wang X, Yu Y, Yang C, Shang L, Zhao Y, Shen X 2022 Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration Adv. Sci. 9 2201155 doi: 10.1002/advs.202201155
|
[120] |
Wang X, Yu Y, Yang C, Shao C, Shi K, Shang L, Ye F, Zhao Y 2021 Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration Adv. Funct. Mater. 31 2105190 doi: 10.1002/adfm.202105190
|
[121] |
Qing H, Ji Y, Li W, Zhao G, Yang Q, Zhang X, Luo Z, Lu T J, Jin G, Xu F 2019 Microfluidic printing of three-dimensional graphene electroactive microfibrous scaffolds ACS Appl. Mater. Interfaces 12 2049-58 doi: 10.1021/acsami.9b17948
|
[122] |
Meng Y, Jin L, Cai B, Wang Z 2017 Facile fabrication of flexible core-shell graphene/conducting polymer microfibers for fibriform supercapacitors RSC Adv. 7 38187-92 doi: 10.1039/C7RA06641D
|
[123] |
Xue F, et al 2024 Two way workable microchanneled hydrogel suture to diagnose, treat and monitor the infarcted heart Nat. Commun. 15 864 doi: 10.1038/s41467-024-45144-y
|
[124] |
Wang P, Zhou J, Xu B, Lu C, Meng Q, Liu H 2020 Bioinspired antiPlateau-Rayleighinstability on dual parallel fibers Adv. Mater. 32 2003453 doi: 10.1002/adma.202003453
|
[125] |
Ma W, Liu D, Ling S, Zhang J, Chen Z, Lu Y, Xu J 2021 High-throughput and controllable fabrication of helical microfibers by hydrodynamically focusing flow ACS Appl. Mater. Interfaces 13 59392-9 doi: 10.1021/acsami.1c20720
|
[126] |
Ma W, Ling S, Zhang J, Chen Z, Xu J 2022 Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing J. Polym. Sci. 60 1741-9 doi: 10.1002/pol.20220041
|
[127] |
Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y 2017 Microfluidic lithography of bioinspired helical micromotors Angew. Chem. 129 12295-9 doi: 10.1002/ange.201705667
|
[128] |
Dong Y, Wang L, Wang J, Wang S, Wang Y, Jin D, Chen P, Du W, Zhang L, Liu B-F 2020 Graphene-based helical micromotors constructed by ‘microscale liquid rope-coil effect’ with microfluidics ACS Nano 14 16600-13 doi: 10.1021/acsnano.0c07067
|
[129] |
Liu J D, Du X Y, Chen S 2021 A phase inversionbased microfluidic fabrication of helical microfibers towards versatile artificial abdominal skin Angew. Chem., Int. Ed. 60 25089-96 doi: 10.1002/anie.202110888
|
[130] |
Shang L, Fu F, Cheng Y, Yu Y, Wang J, Gu Z, Zhao Y 2017 Bioinspired multifunctional spindleknotted microfibers from microfluidics Small 13 1600286 doi: 10.1002/smll.201600286
|
[131] |
Liu Y, Yang N, Li X, Li J, Pei W, Xu Y, Hou Y, Zheng Y 2020 Water harvesting of bioinspired microfibers with rough spindleknots from microfluidics Small 16 1901819 doi: 10.1002/smll.201901819
|
[132] |
He X-H, Wang W, Liu Y-M, Jiang M-Y, Wu F, Deng K, Liu Z, Ju X-J, Xie R, Chu L-Y 2015 Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection ACS Appl. Mater. Interfaces 7 17471-81 doi: 10.1021/acsami.5b05075
|
[133] |
Zhu P, Wang L 2022 Microfluidic spinning of symmetric microfibers Microfluidics-Enabled Soft ManufactureSpringer 137-56
|
[134] |
Wang S, Zhu L, Yu D, Han X, Zhong L, Hou Y, Zheng Y 2023 Bioinspired robust helicalgroove spindleknot microfibers for largescale water collection Adv. Funct. Mater. 33 2305244 doi: 10.1002/adfm.202305244
|
[135] |
Tian Y, Zhu P, Tang X, Zhou C, Wang J, Kong T, Xu M, Wang L 2017 Large-scale water collection of bioinspired cavity-microfibers Nat. Commun. 8 1080 doi: 10.1038/s41467-017-01157-4
|
[136] |
Yang C, Li W, Zhao Y, Shang L 2024 Flexible liquid-diode microtubes from multimodal microfluidics Proc. Natl Acad. Sci. 121 e2402331121 doi: 10.1073/pnas.2402331121
|
[137] |
Sharifi F, Patel B B, McNamara M C, Meis P J, Roghair M N, Lu M, Montazami R, Sakaguchi D S, Hashemi N N 2019 Photo-cross-linked poly (ethylene glycol) diacrylate hydrogels: spherical microparticles to bow tie-shaped microfibers ACS Appl. Mater. Interfaces 11 18797-807 doi: 10.1021/acsami.9b05555
|
[138] |
Shi X, Ostrovidov S, Zhao Y, Liang X, Kasuya M, Kurihara K, Nakajima K, Bae H, Wu H, Khademhosseini A 2015 Microfluidic spinning of cellresponsive grooved microfibers Adv. Funct. Mater. 25 2250-9 doi: 10.1002/adfm.201404531
|
[139] |
Zhao M, Liu H, Zhang X, Wang H, Tao T, Qin J 2021 A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment Biomater. Sci. 9 4880-90 doi: 10.1039/D1BM00549A
|
[140] |
Zamarayeva A M, Ostfeld A E, Wang M, Duey J K, Deckman I, Lechêne B P, Davies G, Steingart D A, Arias A C 2017 Flexible and stretchable power sources for wearable electronics Sci. Adv. 3 e1602051 doi: 10.1126/sciadv.1602051
|
[141] |
Dubal D P, Chodankar N R, Kim D-H, Gomez-Romero P 2018 Towards flexible solid-state supercapacitors for smart and wearable electronics Chem. Soc. Rev. 47 2065-129 doi: 10.1039/c7cs00505a
|
[142] |
Zhang H, Cao Y, Chee M O L, Dong P, Ye M, Shen J 2019 Recent advances in micro-supercapacitors Nanoscale 11 5807-21 doi: 10.1039/C9NR01090D
|
[143] |
Chen D, Jiang K, Huang T, Shen G 2020 Recent advances in fiber supercapacitors: materials, device configurations, and applications Adv. Mater. 32 1901806 doi: 10.1002/adma.201901806
|
[144] |
Qiu H, Cheng H, Meng J, Wu G, Chen S 2020 Magnetothermal microfluidicassisted hierarchical microfibers for ultrahighenergydensity supercapacitors Angew. Chem. 132 8008-17 doi: 10.1002/ange.202000951
|
[145] |
Qiu Y, Ren Y, Jia X, Li H, Zhang M 2023 Microfluidic construction of polypyrrole-coated core-sheath polyaniline/graphene hybrid fibers with excellent properties for wearable supercapacitors ACS Appl. Energy Mater. 6 11189-98 doi: 10.1021/acsaem.3c02056
|
[146] |
Wu X, Wu G, Tan P, Cheng H, Hong R, Wang F, Chen S 2018 Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors J. Mater. Chem. A 6 8940-6 doi: 10.1039/C7TA11135E
|
[147] |
Sun H, Zhang Y, Zhang J, Sun X, Peng H 2017 Energy harvesting and storage in 1D devices Nat. Rev. Mater. 2 1-12 doi: 10.1038/natrevmats.2017.23
|
[148] |
Peng H, Peng H 2015 Fiber-shaped supercapacitor Fiber-Shaped Energy Harvesting and Storage DevicesSpringer 117-45
|
[149] |
Wu G, Tan P, Wu X, Peng L, Cheng H, Wang C-F, Chen W, Yu Z, Chen S 2017 Highperformance wearable microsupercapacitors based on microfluidicdirected nitrogendoped graphene fiber electrodes Adv. Funct. Mater. 27 1702493 doi: 10.1002/adfm.201702493
|
[150] |
Zhou L, et al 2024 Phase inversion-based microfluidic-fiber-spinning assembly of self-supported rGO/PEDOT fiberfabrics towards wearable supercapacitors Adv. Fiber Mater. 6 1-12 doi: 10.1007/s42765-024-00373-0
|
[151] |
Wu M, Yao K, Li D, Huang X, Liu Y, Wang L, Song E, Yu J, Yu X 2021 Self-powered skin electronics for energy harvesting and healthcare monitoring Mater. Today Energy 21 100786 doi: 10.1016/j.mtener.2021.100786
|
[152] |
Du X, Zhang K 2022 Recent progress in fibrous high-entropy energy harvesting devices for wearable applications Nano Energy 101 107600 doi: 10.1016/j.nanoen.2022.107600
|
[153] |
Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang Z L 2021 Flexible and stretchable fibershaped triboelectric nanogenerators for biomechanical monitoring and humaninteractive sensing Adv. Funct. Mater. 31 2006679 doi: 10.1002/adfm.202006679
|
[154] |
Yang Y, et al 2018 Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics ACS Nano 12 2027-34 doi: 10.1021/acsnano.8b00147
|
[155] |
Wang Z L, Zhu G, Yang Y, Wang S, Pan C 2012 Progress in nanogenerators for portable electronics Mater. Today 15 532-43 doi: 10.1016/S1369-7021(13)70011-7
|
[156] |
Ding W, Wang A C, Wu C, Guo H, Wang Z L 2019 Human-machine interfacing enabled by triboelectric nanogenerators and tribotronics Adv. Mater. Technol. 4 1800487 doi: 10.1002/admt.201800487
|
[157] |
Yuan Z, Han S-T, Gao W, Pan C 2021 Flexible and stretchable strategies for electronic skins: materials, structure, and integration ACS Appl. Electron. Mater. 4 1-26 doi: 10.1021/acsaelm.1c00025
|
[158] |
Lin S, Yang W, Zhu X, Lan Y, Li K, Zhang Q, Li Y, Hou C, Wang H 2024 Triboelectric micro-flexure-sensitive fiber electronics Nat. Commun. 15 2374 doi: 10.1038/s41467-024-46516-0
|
[159] |
Zou K, et al 2024 A highly selective implantable electrochemical fiber sensor for real-time monitoring of blood homovanillic acid ACS Nano 18 7485-95 doi: 10.1021/acsnano.3c11641
|
[160] |
Lee J, et al 2021 Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain Nat. Electron. 4 291-301 doi: 10.1038/s41928-021-00557-1
|
[161] |
Herbert R, Lim H-R, Rigo B, Yeo W-H 2022 Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics Sci. Adv. 8 eabm1175 doi: 10.1126/sciadv.abm1175
|
[162] |
Wang L, et al 2020 Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers Nat. Biomed. Eng. 4 159-71 doi: 10.1038/s41551-019-0462-8
|
[163] |
Chen N, Wei W, Ning N, Wu H, Tian M 2024 All-Polymeric stretchable conductive fiber with versatile intelligent wearable applications via microfluidic spinning technology Chem. Eng. J. 487 150741 doi: 10.1016/j.cej.2024.150741
|
[164] |
Yu Y, Guo J, Sun L, Zhang X, Zhao Y 2019 Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics Research 2019 6906275 doi: 10.34133/2019/6906275
|
[165] |
Ding X, Yu Y, Shang L, Zhao Y 2022 Histidine-triggered GO hybrid hydrogels for microfluidic 3D printing ACS Nano 16 19533-42 doi: 10.1021/acsnano.2c09850
|
[166] |
Taylor L, et al 2023 Smart sutures Advanced Technologies and Polymer Materials for Surgical SuturesElsevier 129-48
|
[167] |
Kalidasan V, et al 2021 Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds Nat. Biomed. Eng. 5 1217-27 doi: 10.1038/s41551-021-00802-0
|
[168] |
Alsaedi M K, Riccio R E, Sharma A, Xia J, Owyeung R E, Romero L M, Sonkusale S 2023 Smart sensing flexible sutures for glucose monitoring in house sparrows Analyst 148 5714-23 doi: 10.1039/D3AN01488F
|
[169] |
Li Y, et al 2023 Advances, challenges, and prospects for surgical suture materials Acta Biomater. 168 78-112 doi: 10.1016/j.actbio.2023.07.041
|
[170] |
Lee Y, et al 2021 A multifunctional electronic suture for continuous strain monitoring and on-demand drug release Nanoscale 13 18112-24 doi: 10.1039/D1NR04508C
|