[1] Deng Y, Mou J, He L, Xie F, Zheng Q, Xu C, Lin D 2018 A core-shell structured LiNi0.5Mn1.5O4@LiCoO2 cathode material with superior rate capability and cycling performance Dalton. Trans. 47 367-75 doi: 10.1039/C7DT03963H
[2] Yi T-F, Han X, Chen B, Zhu Y-R, Xie Y 2017 Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery J. Alloys Compd. 703 103-13 doi: 10.1016/j.jallcom.2017.01.342
[3] Ye S H, Bo J K, Li C Z, Cao J S, Sun Q L, Wang Y L 2010 Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method Electrochim. Acta 55 2972-7 doi: 10.1016/j.electacta.2010.01.018
[4] Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule K M, Xu L, Minhas-Khan A, Zhang Q 2014 One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries Nano Lett. 14 1042-8 doi: 10.1021/nl404709b
[5] Mai L, Tian X, Xu X, Chang L, Xu L 2014 Nanowire electrodes for electrochemical energy storage devices Chem. Rev. 114 11828-62 doi: 10.1021/cr500177a
[6] Yu F-D, Que L-F, Wang Z-B, Xue Y, Zhang Y, Liu B-S, Gu D-M 2017 Controllable synthesis of hierarchical ball-in-ball hollow microspheres for a high performance layered Li-rich oxide cathode material J. Mater. Chem. A 5 9365-76 doi: 10.1039/C7TA02553J
[7] Vu A, Qian Y, Stein A 2012 Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special Adv. Energy Mater. 2 1056-85 doi: 10.1002/aenm.201200320
[8] Zhang H, Li Z, Yu S, Xiao Q, Lei G, Ding Y 2016 Carbon-encapsulated LiMn2O4 spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries J. Power Sources 301 376-85 doi: 10.1016/j.jpowsour.2015.10.022
[9] Wang J, Tang H, Wang H, Yu R, Wang D 2017 Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries Mater. Chem. Front. 1 414-30 doi: 10.1039/C6QM00273K
[10] Gent W E, Abate I I, Yang W, Nazar L F, Chueh W C 2020 Design rules for high-valent redox in intercalation electrodes Joule 4 1369-97 doi: 10.1016/j.joule.2020.05.004
[11] Xu G, Liu Z, Zhang C, Cui G, Chen L 2015 Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures J. Mater. Chem. A 3 4092-123 doi: 10.1039/C4TA06264G
[12] Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J G 2016 Li and Mnrich cathode materials: challenges to commercialization Adv. Energy Mater. 7 1601284 doi: 10.1002/aenm.201601284
[13] Radin M D, Hy S, Sina M, Fang C, Liu H, Vinckeviciute J, Zhang M, Whittingham M S, Meng Y S, Van der Ven A 2017 Narrowing the gap between theoretical and practical capacities in liion layered oxide cathode materials Adv. Energy Mater. 7 1602888 doi: 10.1002/aenm.201602888
[14] Chen R, Luo R, Huang Y, Wu F, Li L 2016 Advanced high energy density secondary batteries with multi-electron reaction materials Adv. Sci. 3 1600051 doi: 10.1002/advs.201600051
[15] Croguennec L, Palacin M R 2015 Recent achievements on inorganic electrode materials for LIBs J. Am. Chem. Soc. 137 3140-56 doi: 10.1021/ja507828x
[16] Li W, Erickson E M, Manthiram A 2020 High-nickel layered oxide cathodes for lithium-based automotive batteries Nat. Energy 5 26-34 doi: 10.1038/s41560-019-0513-0
[17] Zhao W, Zhong G, Zheng J, Zheng J, Song J, Gong Z, Chen Z, Zheng G, Jiang Z, Yang Y 2018 Insights into the electrochemical reaction mechanism of a novel cathode material CuNi2(PO4)2/C for Li-ion batteries ACS Appl. Mater. Interfaces 10 3522-9 doi: 10.1021/acsami.7b15086
[18] Jung S-K, et al 2017 Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries Nat. Energy 2 1-9 doi: 10.1038/nenergy.2016.208
[19] Kim T, Jae W J, Kim H, Park M, Han J M, Kim J 2016 A cathode material for lithium-ion batteries based on graphitized carbon-wrapped FeF3 nanoparticles prepared by facile polymerization J. Mater. Chem. A 4 14857-64 doi: 10.1039/C6TA06696H
[20] Shao J, Li X, Wan Z, Zhang L, Ding Y, Zhang L, Qu Q, Zheng H 2013 Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries ACS Appl. Mater. Interfaces 5 7671-5 doi: 10.1021/am401854v
[21] Kim U H, Ryu H H, Kim J H, Mücke R, Kaghazchi P, Yoon C S, Sun Y K 2019 Microstructurecontrolled Nirich cathode material by microscale compositional partition for nextgeneration electric vehicles Adv. Energy Mater. 9 1803902 doi: 10.1002/aenm.201803902
[22] Yang L, Yang K, Zheng J, Xu K, Amine K, Pan F 2020 Harnessing the surface structure to enable high-performance cathode materials for LIBs Chem. Soc. Rev. 49 4667-80 doi: 10.1039/D0CS00137F
[23] Zhou X, Sun H, Zhou H, Xu Z, Yang J 2017 Enhancing cycling performance of FeF3 cathode by introducing a lightweight high conductive adsorbable interlayer J. Alloys Compd. 723 317-26 doi: 10.1016/j.jallcom.2017.06.266
[24] Wu F, Maier J, Yu Y 2020 Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries Chem. Soc. Rev. 49 1569-614 doi: 10.1039/c7cs00863e
[25] Romano Brandt L, Marie J-J, Moxham T, Förstermann D P, Salvati E, Besnard C, Papadaki C, Wang Z, Bruce P G, Korsunsky A M 2020 Synchrotron x-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle Energy Environ. Sci. 13 3556-66 doi: 10.1039/D0EE02290J
[26] Liu L, Li M, Chu L, Jiang B, Lin R, Zhu X, Cao G 2020 Layered ternary metal oxides: performance degradation mechanisms as cathodes, and design strategies for high-performance batteries Prog. Mater. Sci. 111 100655 doi: 10.1016/j.pmatsci.2020.100655
[27] Ezawa M 2019 Protected corners Nat. Mater. 18 1266-7 doi: 10.1038/s41563-019-0534-x
[28] Olbrich L F, Xiao A W, Pasta M 2021 Conversion-type fluoride cathodes: current state of the art Curr. Opin. Electrochem. 30 100779 doi: 10.1016/j.coelec.2021.100779
[29] Zhou L, Zhang K, Hu Z, Tao Z, Mai L, Kang Y-M, Chou S-L, Chen J 2018 Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries Adv. Energy Mater. 8 1701415 doi: 10.1002/aenm.201701415
[30] Ji H, et al 2020 Ultrahigh power and energy density in partially ordered lithium-ion cathode materials Nat. Energy 5 213-21 doi: 10.1038/s41560-020-0573-1
[31] Hwang J, et al 2020 Excess-Li localization triggers chemical irreversibility in Li- and Mn-rich layered oxides Adv. Mater. 32 e2001944 doi: 10.1002/adma.202001944
[32] Yang J, Li P, Zhong F, Feng X, Chen W, Ai X, Yang H, Xia D, Cao Y 2020 Suppressing voltage fading of Lirich oxide cathode via building a wellprotected and partiallyprotonated surface by polyacrylic acid binder for cyclestable Liion batteries Adv. Energy Mater. 10 1904264 doi: 10.1002/aenm.201904264
[33] Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M, Yoon W S 2020 Advances in the cathode materials for lithium rechargeable batteries Angew. Chem., Int. Ed. Engl. 59 2578-605 doi: 10.1002/anie.201902359
[34] Zuo W, et al 2020 Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques Energy Environ. Sci. 13 4450-97 doi: 10.1039/D0EE01694B
[35] Saha S, et al 2019 Exploring the bottlenecks of anionic redox in Li-rich layered sulfides Nat. Energy 4 977-87 doi: 10.1038/s41560-019-0493-0
[36] Assat G, Glazier S L, Delacourt C, Tarascon J-M 2019 Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry Nat. Energy 4 647-56 doi: 10.1038/s41560-019-0410-6
[37] Wang E, Zhao Y, Xiao D, Zhang X, Wu T, Wang B, Zubair M, Li Y, Sun X, Yu H 2020 Composite nanostructure construction on the grain surface of Li-rich layered oxides Adv. Mater. 32 1906070 doi: 10.1002/adma.201906070
[38] Ju L, Wang G, Liang K, Wang M, Sterbinsky G E, Feng Z, Yang Y 2020 Significantly improved cyclability of conversiontype transition metal oxyfluoride cathodes by homologous passivation layer reconstruction Adv. Energy Mater. 10 1903333 doi: 10.1002/aenm.201903333
[39] Wu F, Yushin G 2017 Conversion cathodes for rechargeable lithium and LIBs Energy Environ. Sci. 10 435-59 doi: 10.1039/C6EE02326F
[40] Wang L, Wu Z, Zou J, Gao P, Niu X, Li H, Chen L 2019 Li-free cathode materials for high energy density lithium batteries Joule 3 2086-102 doi: 10.1016/j.joule.2019.07.011
[41] Hua X, et al 2021 2021 Revisiting metal fluorides as LIB cathodes Nat. Mater. 20 841-50 doi: 10.1038/s41563-020-00893-1
[42] Bai Y, et al 2017 3D hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes Nano Energy 32 10-18 doi: 10.1016/j.nanoen.2016.12.017
[43] Tang M, et al 2018 Synthesis of FeF2/carbon composite nanoparticle by one-pot solid state reaction as cathode material for lithium-ion battery J. Mater. Res. Technol. 7 73-76 doi: 10.1016/j.jmrt.2017.05.013
[44] Reddy M A, Breitung B, Kiran Chakravadhanula V S, Helen M, Witte R, Rongeat C, Kübel C, Hahn H, Fichtner M 2018 Facile synthesis of C-FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage RSC Adv. 8 36802-11 doi: 10.1039/C8RA07378C
[45] Yang Z, Zhao S, Pan Y, Wang X, Liu H, Wang Q, Zhang Z, Deng B, Guo C, Shi X 2018 Atomistic insights into FeF3 nanosheet: an ultrahigh-rate and long-life cathode material for Li-ion batteries ACS Appl. Mater. Interfaces 10 3142-51 doi: 10.1021/acsami.7b17127
[46] Zu C-X, Li H 2011 Thermodynamic analysis on energy densities of batteries Energy Environ. Sci. 4 2614-24 doi: 10.1039/c0ee00777c
[47] Cao W, Zhang J, Li H 2020 Batteries with high theoretical energy densities Energy Storage Mater. 26 46-55 doi: 10.1016/j.ensm.2019.12.024
[48] Huang Q, Pollard T P, Ren X, Kim D, Magasinski A, Borodin O, Yushin G 2019 Fading mechanisms and voltage hysteresis in FeF2-NiF2 solid solution cathodes for lithium and lithium-ion batteries Small 15 1804670 doi: 10.1002/smll.201804670
[49] Burbano M, Duttine M, Morgan B J, Borkiewicz O J, Chapman K W, Wattiaux A, Demourgues A, Groult H, Salanne M, Dambournet D 2019 Impact of anion vacancies on the local and electronic structures of Iron-based oxyfluoride electrodes J. Phys. Chem. Lett. 10 107-12 doi: 10.1021/acs.jpclett.8b03503
[50] Guo S N, Guo H, Wang X, Zhu Y, Hu J, Yang M, Zhao L, Wang J 2019 Iron trifluoride as a high voltage cathode material for thermal batteries J. Electrochem. Soc. 166 A3599-A605 doi: 10.1149/2.0371915jes
[51] Han Y, Hu J, Yin C, Zhang Y, Xie J, Yin D, Li C 2016 Iron-based fluorides of tetragonal tungsten bronze structure as potential cathodes for Na-ion batteries J. Mater. Chem. A 4 7382-9 doi: 10.1039/C6TA02061E
[52] Kim S W, Seo D H, Gwon H, Kim J, Kang K 2010 Fabrication of FeF3 Nanoflowers on CNT branches and their application to high power lithium rechargeable batteries Adv. Mater. 22 5260-4 doi: 10.1002/adma.201002879
[53] Hao Z, Fuji M, Zhou J 2019 Diperovskite (NH4)3FeF6/graphene nanocomposites for superior Na-ion storage Sustain. Energy Fuels 3 2828-36 doi: 10.1039/C9SE00439D
[54] Wang F, et al 2011 Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes J. Am. Chem. Soc. 133 18828-36 doi: 10.1021/ja206268a
[55] Karki K, Wu L, Ma Y, Armstrong M J, Holmes J D, Garofalini S H, Zhu Y, Stach E A, Wang F 2018 Revisiting conversion reaction mechanisms in lithium batteries: lithiation-driven topotactic transformation in FeF2 J. Am. Chem. Soc. 140 17915-22 doi: 10.1021/jacs.8b07740
[56] Ko J K, Wiaderek K M, Pereira N, Kinnibrugh T L, Kim J R, Chupas P J, Chapman K W, Amatucci G G 2014 Transport, phase reactions, and hysteresis of iron fluoride and oxyfluoride conversion electrode materials for lithium batteries ACS Appl. Mater. Interfaces 6 10858-69 doi: 10.1021/am500538b
[57] Li L, Jacobs R, Gao P, Gan L, Wang F, Morgan D, Jin S 2016 Origins of large voltage hysteresis in high-energy-density metal fluoride LIB conversion electrodes J. Am. Chem. Soc. 138 2838-48 doi: 10.1021/jacs.6b00061
[58] Gordon D, Huang Q, Magasinski A, Ramanujapuram A, Bensalah N, Yushin G 2018 Mixed metal difluorides as high capacity conversion-type cathodes: impact of composition on stability and performance Adv. Energy Mater. 8 1800213 doi: 10.1002/aenm.201800213
[59] Naoko Y, Meng J, Baris K, Grey C P 2009 Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a li ion battery: a solid-state nmr, x-ray diffraction, and pair distribution function analysis study J. Am. Chem. Soc. 131 10525-36 doi: 10.1021/ja902639w
[60] Li J, Xu L, Wei K, Ma S, Liu X, Zhao Y, Cui Y 2020 In situ forming of ternary metal fluoride thin films with excellent Li storage performance by pulsed laser deposition Ionics 26 3367-75 doi: 10.1007/s11581-020-03528-2
[61] Liu B, et al 2020 Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries Adv. Mater. 32 2003657 doi: 10.1002/adma.202003657
[62] Zhang M, et al 2019 Adsorptioncatalysis design in the lithiumsulfur battery Adv. Energy Mater. 10 1903008 doi: 10.1002/aenm.201903008
[63] Chang Q, Luo Z, Fu L, Zhu J, Yang W, Li D, Zhou L 2020 A new cathode material of NiF2 for thermal batteries with high specific power Electrochim. Acta 361 137051 doi: 10.1016/j.electacta.2020.137051
[64] Nitta N, Wu F, Lee J T, Yushin G 2015 Li-ion battery materials: present and future Mater. Today 18 252-64 doi: 10.1016/j.mattod.2014.10.040
[65] Konarov A, Myung S-T, Sun Y-K 2017 Cathode materials for future electric vehicles and energy storage systems ACS Energy Lett. 2 703-8 doi: 10.1021/acsenergylett.7b00130
[66] Banerjee A, Shilina Y, Ziv B, Ziegelbauer J M, Luski S, Aurbach D, Halalay I C 2017 On the oxidation state of manganese ions in li-ion battery electrolyte solutions J. Am. Chem. Soc. 139 1738-41 doi: 10.1021/jacs.6b10781
[67] Zhao H, Li F, Liu X, Xiong W, Chen B, Shao H, Que D, Zhang Z, Wu Y 2015 A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for LIBs Electrochim. Acta 166 124-33 doi: 10.1016/j.electacta.2015.03.040
[68] Huang Y, Dong Y, Li S, Lee J, Wang C, Zhu Z, Xue W, Li Y, Li J 2021 Lithium manganese spinel cathodes for lithiumion batteries Adv. Energy Mater. 11 2000997 doi: 10.1002/aenm.202000997
[69] Dou S 2015 Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries Ionics 21 3001-30 doi: 10.1007/s11581-015-1545-5
[70] Benedek R, Thackeray M M 2006 Reaction energy for LiMn2O4 spinel dissolution in acid Electrochem. Solid-State Lett. 9 A265 doi: 10.1149/1.2188071
[71] Quinlan F T, Sano K, Willey T, Vidu R, Tasaki K, Stroeve P 2001 Surface characterization of the spinel LixMn2O4 cathode before and after storage at elevated temperatures Chem. Mater. 13 4207-12 doi: 10.1021/cm010335v
[72] Gmitter A J, Badway F, Rangan S, Bartynski R A, Halajko A, Pereira N, Amatucci G G 2010 Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites J. Mater. Chem. 20 4149-61 doi: 10.1039/b923908a
[73] Gu W, Magasinski A, Zdyrko B, Yushin G 2015 Metal fluorides nanoconfined in carbon nanopores as reversible high capacity cathodes for Li and Li-ion rechargeable batteries: feF2 as an example Adv. Energy Mater. 5 1401148 doi: 10.1002/aenm.201401148
[74] Gu W, et al 2016 Lithium-iron fluoride battery with in situ surface protection Adv. Funct. Mater. 26 1507-16 doi: 10.1002/adfm.201504848
[75] Gmitter A J, Gural J, Amatucci G G 2012 Electrolyte development for improved cycling performance of bismuth fluoride nanocomposite positive electrodes J. Power Sources 217 21-28 doi: 10.1016/j.jpowsour.2012.05.104
[76] Huang Q, Turcheniuk K, Ren X, Magasinski A, Song A Y, Xiao Y, Kim D, Yushin G 2019 Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites Nat. Mater. 18 1343-9 doi: 10.1038/s41563-019-0472-7
[77] Huang Q, Turcheniuk K, Ren X, Magasinski A, Gordon D, Bensalah N, Yushin G 2019 Insights into the effects of electrolyte composition on the performance and stability of FeF2 conversiontype cathodes Adv. Energy Mater. 9 1803323 doi: 10.1002/aenm.201803323
[78] Armstrong M J, Panneerselvam A, O’Regan C, Morris M A, Holmes J D 2013 Supercritical-fluid synthesis of FeF2 and CoF2 Li-ion conversion materials J. Mater. Chem. A 1 10667-76 doi: 10.1039/c3ta12436c
[79] Rangan S, Thorpe R, Bartynski R A, Sina M, Cosandey F, Celik O, Mastrogiovanni D D T 2012 Conversion reaction of FeF2 thin films upon exposure to atomic Lithium J. Phys. Chem. C 116 10498-503 doi: 10.1021/jp300669d
[80] Amatucci G G, Pereira N 2007 Fluoride based electrode materials for advanced energy storage devices J. Fluor. Chem. 128 243-62 doi: 10.1016/j.jfluchem.2006.11.016
[81] Ma Y, Garofalini S H 2014 Interplay between the ionic and electronic transport and its effects on the reaction pattern during the electrochemical conversion in an FeF2 nanoparticle Phys. Chem. Chem. Phys. 16 11690-7 doi: 10.1039/C4CP00481G
[82] Wang F, Yu H-C, Chen M-H, Wu L, Pereira N, Thornton K, Van der Ven A, Zhu Y, Amatucci G G, Graetz J 2012 Tracking lithium transport and electrochemical reactions in nanoparticles Nat. Commun. 3 1201 doi: 10.1038/ncomms2185
[83] Thorpe R, Rangan S, Whitcomb R, Basaran A C, Saerbeck T, Schuller I K, Bartynski R A 2015 The solid state conversion reaction of epitaxial FeF2 (110) thin films with lithium studied by angle-resolved x-ray photoelectron spectroscopy Phys. Chem. Chem. Phys. 17 15218-25 doi: 10.1039/C5CP01150G
[84] Zhao S, Li Y, Yang Z, Wang X, Shi X 2019 Atomic-scale dynamics and storage performance of Na/K on FeF3 nanosheet ACS Appl. Mater. Interfaces 11 17425-34 doi: 10.1021/acsami.9b03077
[85] Li R F, Wu S Q, Yang Y, Zhu Z Z 2010 Structural and electronic properties of Li-ion battery cathode material FeF3 J. Phys. Chem. C 114 16813-7 doi: 10.1021/jp1050518
[86] Yang Y, Gao L, Shen L, Bao N 2021 Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode J. Alloys Compd. 873 159799 doi: 10.1016/j.jallcom.2021.159799
[87] Kumagae K, Okazaki K-I, Matsui K, Horino H, Hirai T, Yamaki J-I, Ogumi Z 2016 Improvement of cycling performance of FeF3-based LIB by boron-based additives J. Electrochem. Soc. 163 A1633-A36 doi: 10.1149/2.0871608jes
[88] Wang X, Tan G, Bai Y, Wu F, Wu C 2020 Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective Electrochem. Energy Rev. 4 35-66 doi: 10.1007/s41918-020-00073-4
[89] Liu L, Guo H, Zhou M, Wei Q, Yang Z, Shu H, Yang X, Tan J, Yan Z, Wang X 2013 A comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 cathode materials for lithium ion batteries: structural, electrochemical, and mechanism studies J. Power Sources 238 501-15 doi: 10.1016/j.jpowsour.2013.04.077
[90] Li Z, Wang B, Li C, Liu J, Zhang W 2015 Hydrogen-bonding-mediated structural stability and electrochemical performance of iron fluoride cathode materials J. Mater. Chem. A 3 16222-8 doi: 10.1039/C5TA03327F
[91] Zhou X, Ding J, Tang J, Yang J, Wang H, Jia M 2019 Tailored MoO3-encapsulated FeF3·0.33H2O composites as high performance cathodes for Li-ion batteries J. Electroanal. Chem. 847 113227 doi: 10.1016/j.jelechem.2019.113227
[92] Zhao L, Xu H, Ru H, Shi Y, Zhuang Q, Cui Y, Ju Z, Cui Y 2021 Nanosized FeF3·0.33H2O as cathode material for high-performance Li-ion batteries J. Electrochem. Soc. 168 030501 doi: 10.1149/1945-7111/abe7a3
[93] Rao R S, Pralong V, Varadaraju U V 2016 Facile synthesis and reversible lithium insertion studies on hydrated iron trifluoride FeF3·0.33H2O Solid State Sci. 55 77-82 doi: 10.1016/j.solidstatesciences.2016.02.008
[94] Lemoine K, Zhang L, Dambournet D, Grenèche J-M, Hémon-Ribaud A, Leblanc M, Borkiewicz O J, Tarascon J-M, Maisonneuve V, Lhoste J 2019 Synthesis by Thermal decomposition of two iron hydroxyfluorides: structural effects of Li insertion Chem. Mater. 31 4246-57 doi: 10.1021/acs.chemmater.9b01252
[95] Yang Z, Zhang Z, Yuan Y, Huang Y, Wang X, Chen X, Wei S 2016 First-principles study of Ti doping in FeF3·0.33H2O Curr. Appl Phys. 16 905-13 doi: 10.1016/j.cap.2016.05.010
[96] Li C, Yin C, Mu X, Maier J 2013 Top-down synthesis of open framework fluoride for lithium and sodium batteries Chem. Mater. 25 962-9 doi: 10.1021/cm304127c
[97] Li C, Gu L, Tong J, Tsukimoto S, Maier J 2011 A Mesoporous iron-based fluoride cathode of tunnel structure for rechargeable lithium batteries Adv. Funct. Mater. 21 1391-7 doi: 10.1002/adfm.201002213
[98] Li C, Yin C, Gu L, Dinnebier R E, Mu X, van Aken P A, Maier J 2013 An FeF3.0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries J. Am. Chem. Soc. 135 11425-8 doi: 10.1021/ja402061q
[99] Rao R S, Pralong V, Varadaraju U V 2016 Facile synthesis and lithium reversible insertion on iron hydrated trifluorides FeF3·0.5H2O Mater. Lett. 170 130-4 doi: 10.1016/j.matlet.2016.02.008
[100] Ali G, Lee J H, Chang W, Cho B W, Jung H G, Nam K W, Chung K Y 2017 Lithium intercalation mechanism into FeF3.0.5H2O as a highly stable composite cathode material Sci. Rep. 7 42237 doi: 10.1038/srep42237
[101] Burbano M, Duttine M, Borkiewicz O, Wattiaux A, Demourgues A, Salanne M, Groult H, Dambournet D 2015 Anionic ordering and thermal properties of FeF3·3H2O Inorg. Chem. 54 9619-25 doi: 10.1021/acs.inorgchem.5b01705
[102] Zhou H, Sun H, Wang T, Gao Y, Ding J, Xu Z, Tang J, Jia M, Yang J, Zhu J 2019 Low temperature nanotailoring of hydrated compound by alcohols: feF3·3H2O as an example. Preparation of nanosized FeF3·0.33H2O cathode material for Li-ion batteries Inorg. Chem. 58 6765-71 doi: 10.1021/acs.inorgchem.9b00054
[103] Wang M, Li Z, Wang C, Zhao R, Li C, Guo D, Zhang L, Yin L 2017 Novel core-shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance Adv. Funct. Mater. 27 1701014 doi: 10.1002/adfm.201701014
[104] Park M, Shim J-H, Kim H, Park H, Kim N, Kim J 2018 FeOF ellipsoidal nanoparticles anchored on reduced graphene oxides as a cathode material for sodium-ion batteries J. Power Sources 396 551-8 doi: 10.1016/j.jpowsour.2018.06.071
[105] Fan X, et al 2018 High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction Nat. Commun. 9 2324 doi: 10.1038/s41467-018-04476-2
[106] Li C, Gu L, Tong J, Maier J 2011 Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder: a case study on iron fluoride nanoparticles ACS Nano 5 2930-8 doi: 10.1021/nn1035608
[107] Zhu J, Deng D 2015 Wet-chemical synthesis of phase-pure FeOF nanorods as high-capacity cathodes for sodium-ion batteries Angew. Chem., Int. Ed. Engl. 54 3079-83 doi: 10.1002/anie.201410572
[108] Chevrier V L, Hautier G, Ong S P, Doe R E, Ceder G 2013 First-principles study of iron oxyfluorides and lithiation of FeOF Phys. Rev. B 87 094118 doi: 10.1103/PhysRevB.87.094118
[109] Mansour A N, Badway F, Yoon W S, Chung K Y, Amatucci G G 2010 In situ x-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF2-MoO3 nanocomposite J. Solid State 183 3029-38 doi: 10.1016/j.jssc.2010.09.029
[110] Zheng Y, Zhang P, Wu S Q, Wen Y H, Zhu Z Z, Yang Y 2012 First-principles studies on the structural and electronic properties of Li-ion battery cathode material CuF2 Solid State Commun. 152 1703-6 doi: 10.1016/j.ssc.2012.06.018
[111] Omenya F, et al 2019 Intrinsic challenges to the electrochemical reversibility of the high energy density copper(II) fluoride cathode material ACS Appl. Energy 2 5243-53 doi: 10.1021/acsaem.9b00938
[112] Hua X, Robert R, Du L-S, Wiaderek K M, Leskes M, Chapman K W, Chupas P J, Grey C P 2014 Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery J. Phys. Chem. C 118 15169-84 doi: 10.1021/jp503902z
[113] Thieu D T, Fawey M H, Bhatia H, Diemant T, Chakravadhanula V S K, Behm R J, Kübel C, Fichtner M 2017 CuF2 as reversible cathode for fluoride ion batteries Adv. Funct. Mater. 27 1701051 doi: 10.1002/adfm.201701051
[114] Xia J, Wang Z, Rodrig N D, Nan B, Zhang J, Zhang W, Lucht B L, Yang C, Wang C 2022 Super-reversible CuF2 cathodes enabled by Cu2+-coordinated alginate Adv. Mater. 34 2205229 doi: 10.1002/adma.202205229
[115] Helen M, Fichtner M, Anji Reddy M 2020 Electrochemical synthesis of carbon-metal fluoride nanocomposites as cathode materials for lithium batteries Electrochem. Commun. 120 106846 doi: 10.1016/j.elecom.2020.106846
[116] Bensalah N, Turki D, Kamand F Z, Saoud K 2018 Hierarchical nanostructured mwcnt-MnF2 composites with stable electrochemical properties as cathode material for lithium ion batteries Phys. Status Solidi a 215 1800151 doi: 10.1002/pssa.201800151
[117] Bensalah N, Turki D, Saoud K 2018 Surfactant-aided impregnation of MnF2 into CNT fabrics as cathode material with high electrochemical performance for lithium ion batteries Mater. Des. 147 167-74 doi: 10.1016/j.matdes.2018.03.045
[118] Oh J, Lim E, Chun J, Jo C 2022 Nickel fluoride (NiF2)/porous carbon nanocomposite synthesized via ammonium fluoride (NH4F) treatment for lithium-ion battery cathode applications J. Power Sources 521 213-21 doi: 10.1016/j.jpowsour.2021.230935
[119] Lee D H, Carroll K J, Calvin S, Jin S, Meng Y S 2012 Conversion mechanism of nickel fluoride and NiO-doped nickel fluoride in Li ion batteries Electrochim. Acta 59 213-21 doi: 10.1016/j.electacta.2011.10.105
[120] Zhang Q, Huang Y T, Chen X, Pan A, Cai Z, Liu S, Zhang Y 2019 CoF2 nanoparticles grown on carbon fiber cloth as conversion reaction cathode for lithium-ion batteries J. Alloys Compd. 805 539-44 doi: 10.1016/j.jallcom.2019.07.034
[121] Wang X, Gu W, Lee J T, Nitta N, Benson J, Magasinski A, Schauer M W, Yushin G 2015 Carbon nanotube-CoF2 multifunctional cathode for lithium ion batteries: effect of electrolyte on cycle stability Small 11 5164-73 doi: 10.1002/smll.201501139
[122] Hu B, Wang X, Wang Y, Wei Q, Song Y, Shu H, Yang X 2012 Effects of amorphous AlPO4 coating on the electrochemical performance of BiF3 cathode materials for LIBs J. Power Sources 218 204-11 doi: 10.1016/j.jpowsour.2012.07.010
[123] Oszajca M F, Kravchyk K V, Walter M, Krieg F, Bodnarchuk M I, Kovalenko M V 2015 Colloidal BiF3 nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes Nanoscale 7 16601-5 doi: 10.1039/C5NR04488J
[124] Baumgärtner J F, Krumeich F, Wörle M, Kravchyk K V, Kovalenko M V 2022 Thermal synthesis of conversion-type bismuth fluoride cathodes for high-energy-density Li-ion batteries Chem. Commun. 5 9414-7 doi: 10.1038/s42004-021-00622-y
[125] Wang Y, Zhang M, Zhang Y, Wang Y, Liu W, Yang C, Kondratiev V, Wu F 2022 Enhancing electrochemical performance of CoF2-Li batteries via honeycombed nanocomposite cathode Energy Fuels 36 8439-48 doi: 10.1021/acs.energyfuels.2c01309
[126] Wang S, et al 2022 Precisely synthesized LiF-tipped CoF2-nanorod heterostructures improve energy storage capacities Chem. Sci. 13 12367-73 doi: 10.1039/D2SC04008E
[127] Cheng Q, Chen Y, Lin X, Liu J, Yuan Z, Cai Y 2020 Hybrid cobalt(II) fluoride derived from a bimetallic zeolitic imidazolate framework as a high-performance cathode for lithium-ion batteries J. Phys. Chem. C 124 8624-32 doi: 10.1021/acs.jpcc.0c01292
[128] Zhao J, Zhang H, Niu C, Zhang J, Zeng Z, Wang X 2021 Investigations of high-pressure properties of MnF2 based on the first-principles method J. Phys. Chem. C 125 21709-17 doi: 10.1021/acs.jpcc.1c06568
[129] Baskurt M, Nair R R, Peeters F M, Sahin H 2021 Ultra-thin structures of manganese fluorides: conversion from manganese dichalcogenides by fluorination Phys. Chem. Chem. Phys. 23 10218-24 doi: 10.1039/D1CP00293G
[130] Villa C, Kim S, Lu Y, Dravid V P, Wu J 2019 Cu-substituted NiF2 as a cathode material for Li-ion batteries ACS Appl. Mater. Interfaces 11 647-54 doi: 10.1021/acsami.8b15791
[131] Kitajou A, Eguchi K, Ishado Y, Setoyama H, Okajima T, Okada S 2019 Electrochemical properties of titanium fluoride with high rate capability for LIBs J. Power Sources 419 1-5 doi: 10.1016/j.jpowsour.2019.02.056
[132] Lee J, Kang B 2016 Novel and scalable solid-state synthesis of a nanocrystalline FeF3/C composite and its excellent electrochemical performance Chem. Commun. 52 9414-7 doi: 10.1039/C6CC03706B
[133] Khan J, Ullah H, Sajjad M, Bahadar A, Bhatti Z, Soomro F, Hussain Memon F, Iqbal M, Rehman F, Hussain Thebo K 2021 High yield synthesis of transition metal fluorides (CoF2, NiF2, and NH4MnF3) nanoparticles with excellent electrochemical performance Inorg. Chem. Commun. 130 108751 doi: 10.1016/j.inoche.2021.108751
[134] Zhai J, Lei Z, Rooney D, Wang H, Sun K 2018 Self-templated fabrication of micro/nano structured iron fluoride for high-performance lithium-ion batteries J. Power Sources 396 371-8 doi: 10.1016/j.jpowsour.2018.06.048
[135] Krahl T, Marroquin Winkelmann F, Martin A, Pinna N, Kemnitz E 2018 Novel synthesis of anhydrous and hydroxylated CuF2 nanoparticles and their potential for lithium ion batteries Chemistry 24 7177-87 doi: 10.1002/chem.201800207
[136] Jiang A, Xia D, Li M, Qiang L, Fan R, Lin K, Yang Y 2019 Ball milling produced FeF3containing nanothermites: investigations of its thermal and inflaming properties ChemistrySelect 4 12662-7 doi: 10.1002/slct.201902736
[137] Li J, Meng Y, Wang Y, Li X, Lai Y, Guo Y, Wen X, Xiao D 2021 The fluorination-assisted dealloying synthesis of porous reduced graphene oxide-FeF2@carbon for high-performance lithium-ion battery and the exploration of its electrochemical mechanism Inorg. Chem. Front. 8 3273-83 doi: 10.1039/D1QI00273B
[138] Tan J, et al 2014 Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries J. Power Sources 251 75-84 doi: 10.1016/j.jpowsour.2013.11.004
[139] Li C, Gu L, Tsukimoto S, van Aken P A, Maier J 2010 Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries Adv. Mater. 22 3650-4 doi: 10.1002/adma.201000535
[140] Li B, Rooney D W, Zhang N, Sun K 2013 An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries ACS Appl. Mater. Interfaces 5 5057-63 doi: 10.1021/am400873e
[141] Lai C, Chen K, Zheng Y, Meng J, Hu J, Li C 2023 Tailored deep-eutectic solvent method to enable 3D porous iron fluoride bricks for conversion-type lithium batteries J. Energy Chem. 78 178-87 doi: 10.1016/j.jechem.2022.11.004
[142] Fan X, Zhu Y, Luo C, Suo L, Lin Y, Gao T, Xu K, Wang C 2016 Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries ACS Nano 10 5567-77 doi: 10.1021/acsnano.6b02309
[143] Zhao E, Borodin O, Gao X, Lei D, Xiao Y, Ren X, Fu W, Magasinski A, Turcheniuk K, Yushin G 2018 Lithium-iron (III) fluoride battery with double surface protection Adv. Energy Mater. 8 1800721 doi: 10.1002/aenm.201800721
[144] Wu F, Srot V, Chen S, Lorger S, van Aken P A, Maier J, Yu Y 2019 3D Honeycomb architecture enables a high-rate and long-life iron (III) fluoride-lithium battery Adv. Mater. 31 1905146 doi: 10.1002/adma.201905146
[145] Li W, Li Y, Fang M, Yao X, Li T, Shui M, Shu J 2017 The facile in situ preparation and characterization of C/FeOF/FeF3 nanocomposites as lithium-ion battery cathode materials Ionics 24 1561-9 doi: 10.1007/s11581-017-2334-0
[146] Chun J, et al 2016 Ammonium fluoride mediated synthesis of anhydrous metal fluoride-mesoporous carbon nanocomposites for high-performance lithium ion battery cathodes ACS Appl. Mater. Interfaces 8 35180-90 doi: 10.1021/acsami.6b10641
[147] Wei S, Wang X, Jiang M, Zhang R, Shen Y, Hu H 2016 The FeF3·0.33H2O/C nanocomposite with open mesoporous structure as high-capacity cathode material for lithium/sodium ion batteries J. Alloys Compd. 689 945-51 doi: 10.1016/j.jallcom.2016.08.080
[148] Yang J, Xu Z, Sun H, Zhou X 2016 A three-dimensional interlayer composed of graphene and porous carbon for long-life, high capacity lithium-iron fluoride battery Electrochim. Acta 220 75-82 doi: 10.1016/j.electacta.2016.10.076
[149] Chen G, et al 2019 Enhanced lithium storage capability of FeF3·0.33H2O single crystal with active insertion site exposed Nano Energy 56 884-92 doi: 10.1016/j.nanoen.2018.11.080
[150] Tang M, Zhang Z, Wang Z, Liu J, Yan H, Peng J 2018 High-temperature electrochemical performance of FeF3/C nanocomposite as a cathode material for lithium-ion batteries J. Mater. Eng. Perform. 27 624-9 doi: 10.1007/s11665-018-3167-3
[151] Sina M, Nam K W, Su D, Pereira N, Yang X Q, Amatucci G G, Cosandey F 2013 Structural phase transformation and Fe valence evolution in FeOxF2-x/C nanocomposite electrodes during lithiation and de-lithiation processes J. Mater. Chem. A 1 11629-40 doi: 10.1039/c3ta12109g
[152] Pereira N, Badway F, Wartelsky M, Gunn S, Amatucci G G 2009 Iron oxyfluorides as high capacity cathode materials for lithium batteries J. Electrochem. Soc. 156 A407 doi: 10.1149/1.3106132
[153] Lu Y, Wen Z, Rui K, Wu X, Cui Y 2013 Worm-like mesoporous structured iron-based fluoride: facile preparation and application as cathodes for rechargeable lithium ion batteries J. Power Sources 244 306-11 doi: 10.1016/j.jpowsour.2013.01.035
[154] Ma R, Zhou Y, Yao L, Liu G, Zhou Z, Lee J-M, Wang J, Liu Q 2016 Capacitive behaviour of MnF2 and CoF2 submicro/nanoparticles synthesized via a mild ionic liquid-assisted route J. Power Sources 303 49-56 doi: 10.1016/j.jpowsour.2015.10.102
[155] Hu J, Zhang Y, Cao D, Li C 2016 Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries J. Mater. Chem. A 4 16166-74 doi: 10.1039/C6TA05929E
[156] Murugesan V, et al 2019 Lithium insertion mechanism in iron fluoride nanoparticles prepared by catalytic decomposition of fluoropolymer ACS Appl. Energy 2 1832-43 doi: 10.1021/acsaem.8b01983
[157] Guntlin C P, Zünd T, Kravchyk K V, Wörle M, Bodnarchuk M I, Kovalenko M V 2017 Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties J. Mater. Chem. A 5 7383-93 doi: 10.1039/C7TA00862G
[158] Liu M, Liu J, Chen B, Wu T, Wang G, Chen M, Yang Z, Bai Y, Wang X 2022 Unveiling the role and mechanism of nb doping and in situ carbon coating on improving lithium-ion storage characteristics of rod-like morphology FeF3·0.33H2O Small 18 2105193 doi: 10.1002/smll.202105193
[159] Zhang Z, Yang Z, Li Y, Wang X 2018 Revealing the doping mechanism and effect of cobalt on the HTB-type iron fluoride: a first-principle study J. Phys. Chem. Solids 123 87-96 doi: 10.1016/j.jpcs.2018.07.001
[160] Li J, Xu S, Huang S, Lu L, Lan L, Li S 2017 In situ synthesis of Fe(1-x)CoxF3/MWCNT nanocomposites with excellent electrochemical performance for LIBs J. Mater. Sci. 53 2697-708 doi: 10.1007/s10853-017-1685-2
[161] Liu L, Zhou M, Yi L, Guo H, Tan J, Shu H, Yang X, Yang Z, Wang X 2012 Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries J. Mater. Chem. 22 17539-50 doi: 10.1039/c2jm32936k
[162] Su J, Nong W, Song H, Li Y, Wang C 2021 Enhanced Li-storage capability and cyclability of iron fluoride cathodes by non-equivalent cobalt doping J. Alloys Compd. 870 159395 doi: 10.1016/j.jallcom.2021.159395
[163] Ali G, Rahman G, Chung K Y 2017 Cobalt-doped pyrochlore-structured iron fluoride as a highly stable cathode material for lithium-ion batteries Electrochim. Acta 238 49-55 doi: 10.1016/j.electacta.2017.04.006
[164] Wei S, Wang X, Yu R, Zhang R, Liu M, Yang Z, Hu H 2017 Ti-doped Fe1-xTixF3·0.33H2O/C nanocomposite as an ultrahigh rate capability cathode materials of lithium ion batteries J. Alloys Compd. 702 372-80 doi: 10.1016/j.jallcom.2017.01.240
[165] Ding J, Zhou X, Wang H, Yang J, Gao Y, Tang J 2019 Mn-doped Fe1- xMnxF3·0.33H2O/C cathodes for li-ion batteries: first-principles calculations and experimental study ACS Appl. Mater. Interfaces 11 3852-60 doi: 10.1021/acsami.8b17069
[166] Lu Y, Huang S, Zhang Z, Huang X, Lan L, Lu L, Li S, Li J, Pan C, Zhao F 2019 Mn-doped FeF3·0.33H2O with enhanced electrochemical performance as cathode materials for lithium-ion batteries Ionics 25 5221-8 doi: 10.1007/s11581-019-03094-2
[167] Wang F, Kim S W, Seo D H, Kang K, Wang L, Su D, Vajo J J, Wang J, Graetz J 2015 Ternary metal fluorides as high-energy cathodes with low cycling hysteresis Nat. Commun. 6 6668 doi: 10.1038/ncomms7668
[168] Liu M, Wang Q, Chen B, Lei H, Liu L, Wu C, Wang X, Yang Z 2020 Band-gap engineering of FeF3·0.33H2O nanosphere via Ni doping as a high-performance lithium-ion battery cathode ACS Sustain. Chem. Eng. 8 15651-60 doi: 10.1021/acssuschemeng.0c05258
[169] Liu M, Chen B, Wu T, Li H, Liu X, Wang G, Chen M, Yang Z, Bai Y, Wang X 2023 rGO-encapsulated Co/Ni dual-doped FeF3·0.33H2O nanoparticles enabling a high-rate and long-life iron (III) fluoride-lithium battery Chem. Eng. J. 451 138774 doi: 10.1016/j.cej.2022.138774
[170] Ding J, Zhou X, Luo C, Xu H, Yang J, Tang J 2022 In situ synthesis of graphene-like N, S co-doped carbon nanosheets/FeF3·0.33H2O composite as cathode material for Li-ion battery J. Mater. Sci. 57 1261-70 doi: 10.1007/s10853-021-06625-3
[171] Ding J, Zhou X, Wang Q, Luo C, Yang J, Tang J 2020 N, S CoDoped porous carbon from antibiotic bacteria residues enables a highperformance FeF3  0.33H2O cathode for Liion batteries ChemElectroChem 7 4931-5 doi: 10.1002/celc.202001353
[172] Lee J, Kang B 2016 Superior electrochemical performance of N-doped nanocrystalline FeF3/C with a single-step solid-state process Chem. Commun. 52 12100-3 doi: 10.1039/C6CC06556B
[173] Qiu W, Li Z, Chen K, Li C, Liu J, Zhang W 2019 Stabilizing Low-coordinated O ions to operate cationic and anionic redox chemistry of Li-ion battery materials ACS Appl. Mater. Interfaces 11 37768-78 doi: 10.1021/acsami.9b13463
[174] Kim S, Liu J, Sun K, Wang J, Dillon S J, Braun P V 2017 Improved performance in FeF2 conversion cathodes through use of a conductive 3D scaffold and Al2O3 ALD coating Adv. Funct. Mater. 27 1702783 doi: 10.1002/adfm.201702783
[175] Ma D-L, Cao Z-Y, Wang H-G, Huang X-L, Wang L-M, Zhang X-B 2012 Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries Energy Environ. Sci. 5 8538-42 doi: 10.1039/c2ee22568a
[176] Zhang R, Wang X, Wei S, Wang X, Liu M, Hu H 2017 Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries J. Alloys Compd. 719 331-40 doi: 10.1016/j.jallcom.2017.05.185
[177] Fan X, Luo C, Lamb J, Zhu Y, Xu K, Wang C 2015 PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries Nano Lett. 15 7650-6 doi: 10.1021/acs.nanolett.5b03601
[178] Li J, Fu L, Xu Z, Zhu J, Yang W, Li D, Zhou L 2018 Electrochemical properties of carbon-wrapped FeF3 nanocomposite as cathode material for lithium ion battery Electrochim. Acta 281 88-98 doi: 10.1016/j.electacta.2018.05.158
[179] Yang J, Xu Z, Zhou H, Tang J, Sun H, Ding J, Zhou X 2017 A cathode material based on the iron fluoride with an ultra-thin Li3FeF6 protective layer for high-capacity Li-ion batteries J. Power Sources 363 244-50 doi: 10.1016/j.jpowsour.2017.07.091
[180] Zeng C, Huang C 2022 High-performance LiF@C-coated FeF3·0.33H2O lithium-ion batteries with an ionic liquid electrolyte ACS Omega 7 688-95 doi: 10.1021/acsomega.1c05341
[181] Zhang W, Ma L, Yue H, Yang Y 2012 Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries J. Mater. Chem. 22 24769-75 doi: 10.1039/c2jm34391f
[182] Li L, Zhu J, Xu M, Jiang J, Li C M 2017 In situ engineering toward core regions: a smart way to make applicable FeF3@carbon nanoreactor cathodes for li-ion batteries ACS Appl. Mater. Interfaces 9 17992-8000 doi: 10.1021/acsami.7b04256
[183] Zhou X, et al 2023 CryoTEM study of highperformance iron difluoride cathode enabled by low temperature CVD carbon coating Adv. Funct. Mater. 34 2307131 doi: 10.1002/adfm.202307131
[184] Su Y, et al 2022 Enabling long cycle life and high rate iron difluoride based lithium batteries by in situ cathode surface modification Adv. Sci. 9 2201419 doi: 10.1002/advs.202201419
[185] Badway F, Pereira N, Cosandey F, Amatucci G G 2003 Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries J. Electrochem. Soc. 150 A1209-18 doi: 10.1149/1.1596162
[186] Nishijima M, Gocheva I D, Okada S, Doi T, Yamaki J-I, Nishida T 2009 Cathode properties of metal trifluorides in Li and Na secondary batteries J. Power Sources 190 558-62 doi: 10.1016/j.jpowsour.2009.01.051
[187] Fan X, Zhu Y, Luo C, Gao T, Suo L, Liou S-C, Xu K, Wang C 2016 In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries J. Power Sources 307 435-42 doi: 10.1016/j.jpowsour.2016.01.004
[188] Lu L, Li S, Li J, Lan L, Lu Y, Xu S, Huang S, Pan C, Zhao F 2019 High-performance cathode material of FeF3·0.33H2O modified with carbon nanotubes and graphene for LIBs Nanoscale Res. Lett. 14 1-11 doi: 10.1186/s11671-019-2925-y
[189] Ding J, Zhou X, Luo C, Yang J, Tang J 2021 Bamboo-structured N-doped CNTs/FeF3·0.33H2O derived from melamine as a high-performance cathode for Li-ion batteries New J. Chem. 45 18019-24 doi: 10.1039/D1NJ02855C
[190] Zhang Q, Liu N N, Sun C Z, Fan L S, Zhang N Q, Sun K N 2019 Ultrasmall iron fluoride nanoparticles embedded in graphitized porous carbon derived from Febased metal organic frameworks as highperformance cathode materials for Li batteries ChemElectroChem 6 2189-94 doi: 10.1002/celc.201900244
[191] Song H, Cui H, Wang C 2015 Extremely high-rate capacity and stable cycling of a highly ordered nanostructured carbon-FeF2 battery cathode J. Mater. Chem. A 3 22377-84 doi: 10.1039/C5TA06297G
[192] Li B, Zhang N, Sun K 2014 Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for Li-ion batteries Small 10 2039-46 doi: 10.1002/smll.201303375
[193] Zhang R, Wang X, Wang X, Liu M, Wei S, Wang Y, Hu H 2018 Iron fluoride packaged into 3D order mesoporous carbons as high-performance sodium-ion battery cathode material J. Electrochem. Soc. 165 A89-A96 doi: 10.1149/2.0421802jes
[194] Thangaian K, Jayamkondan Y 2023 Constructing a mesoporous carbon incorporated FeF3 nanocomposite cathode by one-step impregnation route for Li-ion battery applications New J. Chem. 47 20128-35 doi: 10.1039/D3NJ03987K
[195] Fan L, Li B, Zhang N, Sun K 2015 Carbon nanohorns carried iron fluoride nanocomposite with ultrahigh rate lithium ion storage properties Sci. Rep. 5 12154 doi: 10.1038/srep12154
[196] Hu X, Ma M, Mendes R G, Zeng M, Zhang Q, Xue Y, Zhang T, Rümmeli M H, Fu L 2015 Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes J. Mater. Chem. A 3 23930-5 doi: 10.1039/C5TA08014B
[197] Qiu D, Fu L, Zhan C, Lu J, Wu D 2018 Seeding iron trifluoride nanoparticles on reduced graphite oxide for LIBs with enhanced loading and stability ACS Appl. Mater. Interfaces 10 29505-10 doi: 10.1021/acsami.8b08526
[198] Zhai J, Lei Z, Rooney D, Sun K 2019 Top-down synthesis of iron fluoride/reduced graphene nanocomposite for high performance lithium-ion battery Electrochim. Acta 313 497-504 doi: 10.1016/j.electacta.2019.04.024
[199] Zhang Q, Wu X, Gong S, Fan L, Zhang N 2019 Iron fluoride nanoparticles embedded in a nitrogen and oxygen dualdoped 3D porous carbon derived from nori for high rate cathode in lithiumion battery ChemistrySelect 4 10334-9 doi: 10.1002/slct.201902478
[200] Zhang L, Yu L, Li O L, Choi S-Y, Saeed G, Kim K H 2021 FeF3·0.33H2O@carbon nanosheets with honeycomb architectures for high-capacity lithium-ion cathode storage by enhanced pseudocapacitance J. Mater. Chem. A 9 16370-83 doi: 10.1039/D1TA03141D
[201] Zhang Q, Zhang Y, Yin Y, Fan L, Zhang N 2020 Packing FeF3·0.33H2O into porous graphene/carbon nanotube network as high volumetric performance cathode for lithium ion battery J. Power Sources 447 227303 doi: 10.1016/j.jpowsour.2019.227303
[202] Chen S, Lin J, Shi Q, Cai Z, Cao L, Zhu L, Yuan Z 2020 Nanoscale iron fluoride supported by three-dimensional porous graphene as long-life cathodes for lithium-ion batteries J. Electrochem. Soc. 167 080506 doi: 10.1149/1945-7111/ab88be
[203] Jiang J, Li L, Xu M, Zhu J, Li C M 2016 FeF3@thin nickel ammine nitrate matrix: smart configureurations and applications as superior cathodes for Li-ion batteries ACS Appl. Mater. Interfaces 8 16240-7 doi: 10.1021/acsami.6b03949
[204] Li W, et al 2020 2020 FeOF/TiO2 hetero-nanostructures for high-areal-capacity fluoride cathodes ACS Appl. Mater. Interfaces 12 33803-9 doi: 10.1021/acsami.0c09185
[205] Kitajou A, Hokazono M, Taguchi N, Tanaka S, Okada S 2021 Cathode properties of FeF3-V2O5 Glass/C for lithium-ion batteries J. Alloys Compd. 856 157449 doi: 10.1016/j.jallcom.2020.157449
[206] Zhou X, Sun H, Zhou H, Ding J, Xu Z, Bin W, Tang J, Yang J 2018 Enhancing the lithium storage capacity of FeF3 cathode material by introducing C@LiF additive J. Electroanal. Chem. 810 41-47 doi: 10.1016/j.jelechem.2018.01.002
[207] Tawa S, Sato Y, Orikasa Y, Matsumoto K, Hagiwara R 2019 Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol-gel method: its electrochemical behavior and charge-discharge mechanism as a cathode material for lithium secondary batteries J. Power Sources 412 180-8 doi: 10.1016/j.jpowsour.2018.11.046
[208] Li Y, Zhou X, Bai Y, Chen G, Wang Z, Li H, Wu C 2017 Building an electronic bridge via Ag decoration to enhance kinetics of iron fluoride cathode in lithium-ion batteries ACS Appl. Mater. Interfaces 9 19852-60 doi: 10.1021/acsami.7b03980
[209] Li Y, Yao F, Cao Y, Yang H, Feng Y, Feng W 2017 The mediated synthesis of FeF3 nanocrystals through (NH4)3FeF6 precursors as the cathode material for high power lithium ion batteries Electrochim. Acta 253 545-53 doi: 10.1016/j.electacta.2017.09.081
[210] Fu W, Zhao E, Sun Z, Ren X, Magasinski A, Yushin G 2018 Iron Fluoride-Carbon nanocomposite nanofibers as freestanding cathodes for highenergy lithium batteries Adv. Funct. Mater. 28 1801711 doi: 10.1002/adfm.201801711
[211] Li L, Meng F, Jin S 2012 High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism Nano Lett. 12 6030-7 doi: 10.1021/nl303630p
[212] Kong M, Liu K, Ning J, Zhou J, Song H 2017 Perovskite framework NH4FeF3/carbon composite nanosheets as a potential anode material for Li and Na ion storage J. Mater. Chem. A 5 19280-8 doi: 10.1039/C7TA05466A
[213] Chen S, Shi Q, Lin J, Cai Z, Cao L, Zhu L, Yuan Z 2020 Growth behavior and influence factors of three-dimensional hierarchical flower-like FeF3·0.33H2O CrystEngComm 22 5550-7 doi: 10.1039/D0CE00771D
[214] Liu M, Liu L, Hu H, Yang L, Yang Z, Wang Y, Wang X 2018 Flowerlike mesoporous FeF3·0.33H2O with 3D hierarchical nanostructure: size-controlled green-synthesis and application as cathodes for Na-ion batteries ACS Appl. Energy 1 7153-63 doi: 10.1021/acsaem.8b01585
[215] Zhou J, Zhang D, Zhang X, Song H, Chen X 2014 Carbon-nanotube-encapsulated FeF2 nanorods for high-performance lithium-ion cathode materials ACS Appl. Mater. Interfaces 6 21223-9 doi: 10.1021/am506236n
[216] Wang L-P, Wang T-S, Zhang X-D, Liang J-Y, Jiang L, Yin Y-X, Guo Y-G, Wang C-R 2017 Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries J. Mater. Chem. A 5 18464-8 doi: 10.1039/C7TA05138G
[217] Xiao A W, Lee H J, Capone I, Robertson A, Wi T-U, Fawdon J, Wheeler S, Lee H-W, Grobert N, Pasta M 2020 Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes Nat. Mater. 19 644-54 doi: 10.1038/s41563-020-0621-z
[218] Liu J, Liu W, Ji S, Wan Y, Gu M, Yin H, Zhou Y 2014 Iron fluoride hollow porous microspheres: facile solution-phase synthesis and their application for Li-ion battery cathodes Chemistry 20 5815-20 doi: 10.1002/chem.201304713
[219] Guan Q, Cheng J, Li X, Ni W, Wang B 2017 Porous CoF2 spheres synthesized by a one-pot solvothermal method as high capacity cathode materials for lithium-ion batteries Chin. J. Chem. 35 48-54 doi: 10.1002/cjoc.201600229
[220] Liu M, Liu L, Li M, Chen B, Lei H, Hu H, Wang X 2020 Preparation and Li/Na ion storage performance of raspberry-like hierarchical FeF3·0.33H2O micro-sized spheres with controllable morphology J. Alloys Compd. 829 154215 doi: 10.1016/j.jallcom.2020.154215
[221] Wei S, Wang X, Liu M, Zhang R, Wang G, Hu H 2018 Spherical FeF3·0.33H2O/MWCNTs nanocomposite with mesoporous structure as cathode material of sodium ion battery J. Energy Chem. 27 573-81 doi: 10.1016/j.jechem.2017.10.032
[222] Chu Q, Xing Z, Tian J, Ren X, Asiri A M, Al-Youbi A O, Alamry K A, Sun X 2013 Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries J. Power Sources 236 188-91 doi: 10.1016/j.jpowsour.2013.02.026
[223] Li C, Mu X, van Aken P A, Maier J 2013 A high-capacity cathode for lithium batteries consisting of porous microspheres of highly amorphized iron fluoride densified from its open parent phase Adv. Energy Mater. 3 113-9 doi: 10.1002/aenm.201200209
[224] Zhou Y, Wu X, Cheng J, Zhu L, Yuan Z 2024 Facile synthesis of FeF3·0.33H2O@3D N-doped carbon microspheres via self-assembly: an examination of electrochemical cathode dynamics in lithium-ion batteries Electrochim. Acta 475 143621 doi: 10.1016/j.electacta.2023.143621
[225] Wang Y, Xie K, Zhu Y, Tong K, Zhang M, Wu F 2023 Prussian blue microcubes-derived FeF3 cathodes for high-energy and ultra-stable lithium and lithium-ion batteries J. Power Sources 577 233234 doi: 10.1016/j.jpowsour.2023.233234
[226] Lin J, Zhu L, Chen S, Li Q, He Z, Cai Z, Cao L, Yuan Z, Liu J 2019 Self-templated formation of hollow yolk-like spheres iron fluoride as cathode material for high-performance li-ion batteries J. Electrochem. Soc. 166 A2074-82 doi: 10.1149/2.0991910jes
[227] Sun H, Zhou H, Xu Z, Ding J, Yang J, Zhou X 2017 Preparation of anhydrous iron fluoride with porous fusiform structure and its application for Li-ion batteries Microporous Mesoporous Mater. 253 10-17 doi: 10.1016/j.micromeso.2017.06.033
[228] Tang Y, An J, Xing H, Wang X, Zhai B, Zhang F, Song Y, Li G 2018 Synthesis of iron-fluoride materials with controlled nanostructures and composition through a template-free solvothermal route for lithium ion batteries New J. Chem. 42 9091-7 doi: 10.1039/C8NJ00932E
[229] Lu Y, Wen Z, Jin J, Rui K, Wu X 2014 Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries Phys. Chem. Chem. Phys. 16 8556-62 doi: 10.1039/c4cp00568f
[230] Zhang Q, Sun C, Fan L, Zhang N, Sun K 2019 Iron fluoride vertical nanosheets array modified with graphene quantum dots as long-life cathode for lithium ion batteries Chem. Eng. J. 371 245-51 doi: 10.1016/j.cej.2019.04.073
[231] Jiang Z, Wang Y, Chen X, Chu F, Jiang X, Kwofie F, Pei Q, Luo S, Arbiol J, Wu F 2023 Multicore-shell iron fluoride@carbon microspheres as a long-life cathode for high-energy lithium batteries J. Mater. Chem. A 11 21541-52 doi: 10.1039/D3TA05054H
[232] Xu Y, Xiong W, Huang J, Tang X, Wang H, Liu W, Xiao D, Guo Y, Zhang Y 2023 Pressure-induced growth of coralloid-like FeF2 nanocrystals to enable high-performance conversion cathode J. Energy Chem. 79 291-300 doi: 10.1016/j.jechem.2023.01.006
[233] Wang Y, Zhou P, Zhang M, He Z, Cheng Y, Zhou Y, Wu F 2023 High-performance honeycombed FeF3@C cathodes enabling practical lithium pouch cells and silicon-metal fluoride batteries Energy Storage Mater. 60 102847 doi: 10.1016/j.ensm.2023.102847
[234] Wu F, Srot V, Chen S, Zhang M, van Aken P A, Wang Y, Maier J, Yu Y 2021 Metal-organic framework-derived nanoconfinements of CoF2 and mixed-conducting wiring for high-performance metal fluoride-lithium battery ACS Nano 15 1509-18 doi: 10.1021/acsnano.0c08918
[235] Cheng Q, Pan Y, Chen Y, Zeb A, Lin X, Yuan Z, Liu J 2020 Nanostructured iron fluoride derived from Fe-based metal-organic framework for lithium ion battery cathodes Inorg. Chem. 59 12700-10 doi: 10.1021/acs.inorgchem.0c01783
[236] Zhang L, Ji S, Yu L, Xu X, Liu J 2017 Amorphous FeF3/C nanocomposite cathode derived from metal-organic frameworks for sodium ion batteries RSC Adv. 7 24004-10 doi: 10.1039/C7RA03592F