[1] |
Shan J-Y, Che J, Song C, Zhao Y 2023 Emerging antibacterial nanozymes for wound healing Smart Med. 2 e20220025 doi: 10.1002/SMMD.20220025
|
[2] |
Morgan E, Soerjomataram I, Rumgay H, Coleman H G, Thrift A P, Vignat J, Laversanne M, Ferlay J, Arnold M 2020 The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN Gastroenterology 163 649-58.e2 doi: 10.1053/j.gastro.2022.05.054
|
[3] |
Yang C-Y, Yu Y, Shang L, Zhao Y 2024 Flexible hemline-shaped microfibers for liquid transport Nat. Chem. Eng. 1 87-96 doi: 10.1038/s44286-023-00001-5
|
[4] |
Matoska T, et al 2022 Definitive chemoradiotherapy ± induction chemotherapy in esophageal cancer: a real-world experience J. Clin. Oncol. 40 e16072 doi: 10.1200/JCO.2022.40.16_suppl.e16072
|
[5] |
Zhang X-X, Lu M, Cao X, Zhao Y 2023 Functionalized microneedles for wearable electronics Smart Med. 2 e20220023 doi: 10.1002/SMMD.20220023
|
[6] |
Thrumurthy S G, Chaudry M A, Thrumurthy S S D, Mughal M 2019 Oesophageal cancer: risks, prevention, and BMJ 366 l4373 doi: 10.1136/bmj.l4373
|
[7] |
Huang D-Q, Cai L, Li N, Zhao Y 2023 Ultrasound-trigged micro/nanorobots for biomedical applications Smart Med. 2 e20230003 doi: 10.1002/SMMD.20230003
|
[8] |
Forde P M, et al 2022 Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer N. Engl. J. Med. 386 1973-85 doi: 10.1056/NEJMoa2202170
|
[9] |
Ji Y, Du X, Chen M 2022 Definitive chemoradiotherapy for older patients with esophageal cancer-reply JAMA Oncol. 8 305-6 doi: 10.1001/jamaoncol.2021.6843
|
[10] |
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis R L, Ghorbani F, Oliveira J M 2023 Progress of microfluidic hydrogel-based scaffolds and organ-on-chips for the cartilage tissue engineering Adv. Mater. 35 e2208852 doi: 10.1002/adma.202208852
|
[11] |
Lin X, Cai L, Cao X, Zhao Y 2023 Stimuli-responsive silk fibroin for on-demand drug delivery Smart Med. 2 e20220019 doi: 10.1002/SMMD.20220019
|
[12] |
Kuzmanov U, et al 2020 Mapping signalling perturbations in myocardial fibrosis via the integrative phosphoproteomic profiling of tissue from diverse sources Nat. Biomed. 4 889-900 doi: 10.1038/s41551-020-0585-y
|
[13] |
Lee S, Kim S, Koo D-J, Yu J, Cho H, Lee H, Song J M, Kim S-Y, Min D-H, Jeon N L 2021 3D microfluidic platform and tumor vascular mapping for evaluating anti-angiogenic RNAi-based nanomedicine ACS Nano 15 338-50 doi: 10.1021/acsnano.0c05110
|
[14] |
Cui C, Gao H-L, Wang Z-Y, Wen S-M, Wang L-J, Fan X, Gong X, Yu S-H 2023 Controlled desiccation of preprinted hydrogel scaffolds toward complex 3D microarchitectures Adv. Mater. 35 e2207388 doi: 10.1002/adma.202207388
|
[15] |
Wu X-Y, et al 2023 Chronic wounds: pathological characteristics and their stem cell-based therapies Eng. Regen. 4 81-94 doi: 10.1016/j.engreg.2022.11.004
|
[16] |
Rodrigues R, Sousa P C, Gaspar J, BañobreLópez M, Lima R, Minas G 2020 Organ-on-a-chip: a preclinical microfluidic platform for the progress of nanomedicine Small 16 e2003517 doi: 10.1002/smll.202003517
|
[17] |
Huang J-J, et al 2023 Emerging microfluidic technologies for sperm sorting 2023 Eng. Regen. 4 161-9 doi: 10.1016/j.engreg.2023.02.001
|
[18] |
Qian Y, Zheng Y, Jin J, Wu X, Xu K, Dai M, Niu Q, Zheng H, He X, Shen J 2022 Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold Adv. Mater. 34 e2200521 doi: 10.1002/adma.202200521
|
[19] |
Shao C-M, et al 2023 Organ-on-a-chip for dynamic tumor drug resistance investigation J. Chem. Eng. 460 141739 doi: 10.1016/j.cej.2023.141739
|
[20] |
Zhang S Y, et al 2017 Inverse opal scaffolds and their biomedical applications Adv. Mater. 29 1701115 doi: 10.1002/adma.201701115
|
[21] |
Shao C-M, Liu Y, Chi J, Wang J, Zhao Z, Zhao Y 2019 Responsive inverse opal scaffolds with biomimetic enrichment capability for cell culture Research 2019 9783793 doi: 10.34133/2019/9783793
|
[22] |
Sun L-Y, Wang Y, Xu D, Zhao Y 2023 Emerging technologies for cardiac tissue engineering and artificial hearts Smart Med. 2 e20220040 doi: 10.1002/SMMD.20220040
|
[23] |
Yu Y-R, et al 2021 Living materials for regenerative medicine Eng. Regen. 2 96-104 doi: 10.1016/j.engreg.2021.08.003
|
[24] |
Takeshi U, et al 2024 Ionic liquid interface as a cell scaffold Adv. Mater. 36 e2310105 doi: 10.1002/adma.202310105
|
[25] |
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E 2020 Microfluidic skin-on-a-chip models: toward biomimetic artificial skin Small 16 e2002515 doi: 10.1002/smll.202002515
|
[26] |
Chen C, Wang Y, Zhang H, Zhang H, Dong W, Sun W, Zhao Y 2021 Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment Bioact. Mater. 15 194-202 doi: 10.1016/j.bioactmat.2021.11.037
|
[27] |
Chen W-W, Nie M, Gan J, Xia N, Wang D, Sun L 2024 Tailoring cell sheets for biomedical applications Smart Med. 3 e20230038 doi: 10.1002/SMMD.20230038
|
[28] |
Shi Z-D, et al 2022 Targeting HNRNPU to overcome cisplatin resistance in bladder cancer Mol. Cancer 21 37 doi: 10.1186/s12943-022-01517-9
|
[29] |
Choi S, et al 2023 Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles Nat. Mater. 22 1039-46 doi: 10.1038/s41563-023-01611-3
|
[30] |
Koenig L, et al 2022 A human stem cell-derived brain-liver chip for assessing blood-brain-barrier permeation of pharmaceutical drugs Cells 11 3295 doi: 10.3390/cells11203295
|
[31] |
Yang C 2021 The prospects of tumor chemosensitivity testing at the single-cell level Drug Resist. Updates 54 100741 doi: 10.1016/j.drup.2020.100741
|
[32] |
Tang Q-Q, et al 2020 Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening Bio. Mater. 6 169-78 doi: 10.1016/j.bioactmat.2020.07.016
|
[33] |
Gokyurek M, Guler S, Gokyer S, Yazihan N, Aknc M, Gülçelik M A, Yilmaz K B, Yilgor P 2023 3D printed hydrogel scaffold promotes the formation of hormone-active engineered parathyroid tissue Biomed. Mater. 18 doi: 10.1088/1748-605X/acc99d
|
[34] |
Hou Y-C, et al 2021 The therapeutic potential of MSC-EVs as a bioactive material for wound healing Eng. Regen. 2 182-94 doi: 10.1016/j.engreg.2021.11.003.
|
[35] |
Zhu Y-J, Kong B, Liu R, Zhao Y 2022 Developing biomedical engineering technologies for reproductive medicine Smart Med. 1 e20220006 doi: 10.1002/SMMD.20220006
|
[36] |
Dickson I, et al 2020 Multispecies liver-on-a-chip for improved drug toxicity testing Nat. Rev. Gastroenterol. Hepatol. 17 4 doi: 10.1038/s41575-019-0244-5
|
[37] |
Hull S, Lou J, Lindsay C D, Navarro R S, Cai B, Brunel L G, Westerfield A D, Xia Y, Heilshorn S C 2023 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators Sci. Adv. 9 eade7880 doi: 10.1126/sciadv.ade7880
|
[38] |
Kusumoto D, et al 2021 Anti-senescent drug screening by deep learning-based morphology senescence scoring Nat. Commun. 12 257 doi: 10.1038/s41467-020-20213-0
|
[39] |
Griffin D R, et al 2021 Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing Nat. Mater. 20 560-9 doi: 10.1038/s41563-020-00844-w
|
[40] |
Chen H-X, Guo J, Bian F, Zhao Y 2022 Microfluidic technologies for cell deformability cytometry Smart Med. 1 e20220001 doi: 10.1002/SMMD.20220001
|