Asano S, Engel BD, Baumeister W (2015) In situ cryo-electron tomography: a post-reductionist approach to structural biology. J Mol Biol 428(2): 332−343
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793): 1642−1645 doi: 10.1126/science.1127344
Briegel A, Chen SY, Koster AJ, Plitzko JM, Schwartz CL, Jensen GJ (2010) Correlated light and electron cryo-microscopy. Methods Enzymol 481: 317−341
Chang YW, Chen SY, Tocheva EI, Treuner-Lange A, Loebach S, Sogaard-Andersen L, Jensen GJ (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11(7): 737−739 doi: 10.1038/nmeth.2961
Chen M, Dai W, Sun SY, Jonasch D, He CY, Schmid MF, Chiu W, Ludtke SJ (2017) Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat Methods 14(10): 983−985 doi: 10.1038/nmeth.4405
Dahlberg PD, Moerner WE (2021) Cryogenic super-resolution fluorescence and electron microscopy correlated at the nanoscale. Annu Rev Phys Chem 72: 253−278 doi: 10.1146/annurev-physchem-090319-051546
Dahlberg PD, Saurabh S, Sartor AM, Wang JR, Mitchell PG, Chiu W, Shapiro L, Moerner WE (2020) Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. Proc Natl Acad Sci USA 117(25): 13937−13944
de Boer P, Hoogenboom JP, Giepmans BNG (2015) Correlated light and electron microscopy: ultrastructure lights up! Nat Methods 12(6): 503−513
DeRosier DJ (2021) Where in the cell is my protein. Q Rev Biophys 54: e9. https://doi.org/10.1017/S003358352100007X doi: 10.1017/S003358352100007X
Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5): 22−36
Fu ZF, Peng DM, Zhang MS, Xue FD, Zhang R, He WT, Xu T, Xu PY (2020) mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM. Nat Methods 17(1): 55−58 doi: 10.1038/s41592-019-0613-6
Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1): 281−287 doi: 10.1016/j.jsb.2006.06.010
Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11): 4258−4272 doi: 10.1529/biophysj.106.091116
Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang C-L, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF. (2020) Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367(6475): eaaz5357. https://doi.org/10.1126/science/aaz5357 doi: 10.1126/science/aaz5357
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera — A visualization system for exploratory research and analysis. J Comput Chem 25(13): 1605−1612 doi: 10.1002/jcc.20084
Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JAG (2012) Precise, correlated fluorescence microscopy and electron tomography of Lowicryl sections using fluorescent fiducial markers. Methods Cell Biol 111: 235−257
Li XM, Lei JL, Wang HW (2018) The application of CorrSightTM in correlative light and electron microscopy of vitrified biological specimens. Biophys Rep 4(3): 143−152 doi: 10.1007/s41048-018-0059-x
Liu B, Xue YH, Zhao W, Chen Y, Fan CY, Gu LS, Zhang YD, Zhang X, Sun L, Huang XJ, Ding W, Sun F, Ji W, Xu T (2015) Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci Rep 5: 13017. https://doi.org/10.1038/srep13017 doi: 10.1038/srep13017
Lucic V, Forster F, Baumeister W (2005) Structural studies by electron tomography: From cells to molecules. Annu Rev Biochem 74: 833−865 doi: 10.1146/annurev.biochem.73.011303.074112
Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 197(2): 102−113 doi: 10.1016/j.jsb.2016.07.011
Milne JLS, Borgnia MJ, Bartesaghi A, Tran EEH, Earl LA, Schauder DM, Lengyel J, Pierson J, Patwardhan A, Subramaniam S (2013) Cryo-electron microscopy — A primer for the non-microscopist. FEBS J 280(1): 28−45 doi: 10.1111/febs.12078
Orlova EV, Saibil HR (2011) Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 111(12): 7710−7748 doi: 10.1021/cr100353t
Paez-Segala MG, Sun MG, Shtengel G, Viswanathan S, Baird MA, Macklin JJ, Patel R, Allen JR, Howe ES, Piszczek G, Hess HF, Davidson MW, Wang Y, Looger LL (2015) Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 12(3): 215−218 doi: 10.1038/nmeth.3225
Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10): 793−795 doi: 10.1038/nmeth929
Scher N, Avinoam O (2021) 50 Shades of CLEM: how to choose the right approach for you. Methods Cell Biol 162: 1−11
Schwartz CL, Sarbash VI, Ataullakhanov FI, Mcintosh JR, Nicastro D (2007) Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227(2): 98−109 doi: 10.1111/j.1365-2818.2007.01794.x
Tian BY, Xu XJ, Xue YH, Ji W, Xu T (2021) Cryogenic superresolution correlative light and electron microscopy on the frontier of subcellular imaging. Biophys Rev 13: 1163−1171 doi: 10.1007/s12551-021-00851-4
Tuijtel MW, Koster AJ, Jakobs S, Faas FGA, Sharp TH (2019) Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci Rep 9: 1369. https://doi.org/10.1038/s41598-018-37728-8 doi: 10.1038/s41598-018-37728-8
Wang SL, Li SG, Ji G, Huang XJ, Sun F (2017) Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophys Rep 3(1): 8−16
Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1): 80−84 doi: 10.1038/nmeth.1537
Xu XJ (2019) The construction of the ultra-stable super-resolution fluorescence cryo-microscopy and the development of the support film for correlative light and electron cryo-microscopy. Dissertation, Huazhong University of Science and Technology
Xu XJ, Xue YH, Tian BY, Feng FP, Gu LS, Li WX, Ji W, Xu T (2018) Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy. Sci China Life Sci 61(11): 1312−1319 doi: 10.1007/s11427-018-9380-3
Yang ZY, Zhao XC, Xu JS, Shang WN, Tong C (2018) A novel fluorescent reporter detects plastic remodeling of mitochondria–ER contact sites. J Cell Sci 131(1): jcs208686. https://doi.org/10.1242/jcs.208686 doi: 10.1242/jcs.208686
Zhang YD, Gu LS, Chang H, Ji W, Chen Y, Zhang MS, Yang L, Liu B, Chen LY, Xu T (2013) . Ultrafast, accurate, and robust localization of anisotropic dipoles. Protein Cell 4(8): 598−606 doi: 10.1007/s13238-013-3904-1
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng YF, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14(4): 331−332 doi: 10.1038/nmeth.4193