[1] BRADY J J, ARGIRAKIS B L, GORDON A D, et al. Polymorphic phase control of RDX-based explosives [J]. Applied Spectroscopy, 2018, 72(1): 28–36. doi: 10.1177/0003702817712259
[2] YOUNG G, WILSON D P, KESSLER M, et al. Ignition and combustion characteristics of Al/RDX/NC nanostructured microparticles [J]. Combustion Science and Technology, 2021, 193(13): 2259–2275. doi: 10.1080/00102202.2020.1733541
[3] WANG B B, LIAO X, DELUCA L T, et al. Effects of particle size and content of RDX on burning stability of RDX-based propellants [J]. Defence Technology, 2022, 18(7): 1247–1256. doi: 10.1016/j.dt.2021.05.009
[4] GRILLI N, KOSLOWSKI M. The effect of crystal orientation on shock loading of single crystal energetic materials [J]. Computational Materials Science, 2018, 155: 235–245. doi: 10.1016/j.commatsci.2018.08.059
[5] SZALA M. Development trends in artillery ammunition propellants [J]. Materiały Wysokoenergetyczne, 2020, 12(2): 5–16. doi: 10.22211/matwys/0196
[6] LI Y, JIANG C L, WANG Z C, et al. Experimental study on reaction characteristics of PTFE/Ti/W energetic materials under explosive loading [J]. Materials, 2016, 9(11): 936. doi: 10.3390/ma9110936
[7] ZEMAN S, JUNGOVÁ M. Sensitivity and performance of energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426–451. doi: 10.1002/prep.201500351
[8] BRILL T B, RUSSELL T P, TAO W C, et al. Decomposition, combustion, and detonation chemistry of energetic materials [C]//Proceedings of the Materials Research Society Symposium Proceedings. Pittsburgh: Materials Research Society, 1996.
[9] MA J C, CHINNAM A K, CHENG G B, et al. 1, 3, 4-oxadiazole bridges: a strategy to improve energetics at the molecular level [J]. Angewandte Chemie, 2021, 133(10): 5557–5564. doi: 10.1002/ange.202014207
[10] 钟凯, 刘建, 王林元, 等. 含能材料中“热点”的理论模拟研究进展 [J]. 含能材料, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002 ZHONG K, LIU J, WANG L Y, et al. Lssue of ‘hot-spot’ in energetic materials: recent progresses of modeling and calculations [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002
[11] 经福谦, 陈俊祥. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006: 121−128. JING F Q, CHEN J X. Dynamic high-pressure generation principle and related technologies [M]. Beijing: National Defense Industry Press, 2006: 121−128.
[12] BARUA A, HORIE Y, ZHOU M. Energy localization in HMX-estane polymer-bonded explosives during impact loading [J]. Journal of Applied Physics, 2012, 111(5): 054902. doi: 10.1063/1.3688350
[13] BARUA A, KIM S, HORIE Y, et al. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold [J]. Journal of Applied Physics, 2013, 113(6): 064906. doi: 10.1063/1.4792001
[14] OWENS F J, SHARMA J. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids [J]. Journal of Applied Physics, 1980, 51(3): 1494–1497. doi: 10.1063/1.327798
[15] BOTCHER T R, WIGHT C A. Explosive thermal decomposition mechanism of RDX [J]. The Journal of Physical Chemistry, 1994, 98(21): 5441–5444. doi: 10.1021/j100072a009
[16] DATTELBAUM D M, SHEFFIELD S A, GUSTAVSEN R L. In-situ electromegnetic gauging and its application to shock compression science and detonation physcis: LA-UR-11-00984 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
[17] BOURNE N K, MILNE A M. The temperature of a shock-collapsed cavity [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459(2036): 1851–1861. doi: 10.1098/rspa.2002.1101
[18] KARAKHANOV S M, PLASTININ A V, BORDZILOVSKII D S, et al. Time of hot-spot formation in shock compression of microballoons in a condensed medium [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 350–357. doi: 10.1134/S0010508216030151
[19] BOURNE N K, FIELD J E. Shock-induced collapse and luminescence by cavities [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1751): 295–311. doi: 10.1098/rsta.1999.0328
[20] WANG Y P, LIU F S, LIU Q J, et al. Raman spectra of liquid nitromethane under singly shocked conditions [J]. Chinese Journal of Chemical Physics, 2016, 29(2): 161–166. doi: 10.1063/1674-0068/29/cjcp1503037
[21] 谭华. 金属的冲击波温度测量(Ⅰ)—高温计的标定和界面温度的确定 [J]. 高压物理学报, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003 TAN H. Shock temperature measurements for metal (Ⅰ)—calibration of pyrometers and data reduction for the temperature at the interface [J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003
[22] SHEN Y R, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355
[23] GIBBS T R, POPOLATO A. LASL explosive property data [M]. Berkeley: University of California Press, 1980: 141–151.
[24] MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. doi: 10.1063/1.329160
[25] COPPARI F, LAZICKI A, FRATANDUONO D, et al. New Hugoniot measurements on LiF and diamond from laser-driven compression [C]//Proceedings of the APS Topical Conference on the Shock Compression of Matter, 2015.
[26] LU J P. Evaluation of the thermochemical code-CHEETAH 2.0 for modelling explosives performance: DSTO-TR-1199 [R]. Aeronautical and Maritime Research Laboratory, 2001: 1−24.
[27] HOBBS M L, BAER M R. Calibrating the BKW-EOS with a large product species data base and measured C-J properties [C]//Proceedings of the 10th Symposium (International) on Detonation. Boston: Office of Naval Research, 1993: 409−418.
[28] HENGLEIN F A. Chemical technology [M]. 2nd ed. Oxford: Pergamon Press, 1969: 718−728.
[29] RAVINDRAN T R, RAJAN R, VENKATESAN V. Review of phase transformations in energetic materials as a function of pressure and temperature [J]. The Journal of Physical Chemistry C, 2019, 123(48): 29067–29085. doi: 10.1021/acs.jpcc.9b04885
[30] LOBOIKO B G, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733. doi: 10.1023/A:1002898505288
[31] KARIMI M, OCHS B, LIU Z F, et al. Measurement of methane autoignition delays in carbon dioxide and argon diluents at high pressure conditions [J]. Combustion and Flame, 2019, 204: 304–319. doi: 10.1016/j.combustflame.2019.03.020
[32] CHEN J N, LI A N, HUANG Z, et al. Numerical study on CO2 non-equilibrium condensation considering shock waves for the potential of flue gas decarbonization [J]. International Communications in Heat and Mass Transfer, 2023, 144: 106749. doi: 10.1016/j.icheatmasstransfer.2023.106749