[1] |
Choa S H. Reliability of MEMS packaging:vacuum maintenance and packaging induced stress[J]. Microsystem technologies,2005,11:1187−1196 doi: 10.1007/s00542-005-0603-8
|
[2] |
Grzebyk T, Górecka-Drzazga A. MEMS type ionization vacuum sensor[J]. Sensors and Actuators A:Physical,2016,246:148−155 doi: 10.1016/j.sna.2016.05.021
|
[3] |
Humphries J S, Hwang C S. Miniature penning ionization gauge for pulsed gas measurements[J]. Review of Scientific Instruments,1984,55(10):1663−1665 doi: 10.1063/1.1137637
|
[4] |
MKS. 903 Inverted Magnetron Cold Cathode Vacuum Transducer[EB/OL]. http://www.mks.com/f/903-cold-cathode-vacuum-transducer, 2020
|
[5] |
赵彦晴, 魏贤龙. 片上微型真空泵的研究进展[J]. 真空电子技术,2022,6:1−13 (in Chinese)
Zhao Y Q, Wei X L. Advances in on-chip micro vacuum pumps[J]. Vacuum Electronics,2022,6:1−13
|
[6] |
Grzebyk T, Górecka-Drzazga A. Field-emission electron source for vacuum micropump[J]. Vacuum,2011,86(1):39−43
|
[7] |
Deng S Y, Green S R, Gianchandani Y B. A 3D-printed miniature magnetron gauge for ultra-high vacuum environments[J]. Vacuum,2018,156:264−270 doi: 10.1016/j.vacuum.2018.07.039
|
[8] |
Laser D J, Santiago J G. A review of micropumps[J]. Journal of micromechanics and microengineering,2004,14(6):R35 doi: 10.1088/0960-1317/14/6/R01
|
[9] |
Hobson J P. Performance of a combined magnetron pump-gauge at ultrahigh vacuum[J]. Surface Science, 1980:273−280
|
[10] |
Asamaki T, Taniguchi T, Fukaya T, et al. Large-Scale coaxial magnetron discharge containing magnets at extremely high vacuum and its application to sputter ion pump[J]. Shinku, 1995:17−21
|
[11] |
Dolcino L, Mura M, Paolini C. 50 Years of Varian sputter ion pumps and new technologies[J]. Vacuum,2009,12(10):677−684
|
[12] |
Peacock R N, Peacock N T, Hauschulz D S. Comparison of hot cathode and cold cathode ionization gauges[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1991,9(3):1977−1985
|
[13] |
朱冠卿, 邹鹏飞, 毕海林, 等. 标准真空电馈通微型磁控管真空计及其性能研究[J]. 真空科学与技术学报,2024,5:394−400 (in Chinese)
Zhu G Q, Zou P F, Bi H L, et al. Standard vacuum electrically fed micro-magnetron vacuum gauge and its performance study[J]. Chinese Journal of Vacuum Science and Technology,2024,5:394−400
|
[14] |
Wutz M. Getter-ion pumps of the magnetron type and an attempted interpretation of the discharge mechanism[J]. Vacuum,1969,19(1):1−12 doi: 10.1016/S0042-207X(69)92069-7
|
[15] |
Schulz L. Sputter-ion pumps[J]. Cern,1999,264:37−42
|
[16] |
Vesel A, Mozetic M, Kovac J, et al. XPS study of the deposited Ti layer in a magnetron-type sputter ion pump[J]. Applied Surface Science,2006,253(5):2941−2946 doi: 10.1016/j.apsusc.2006.06.033
|
[17] |
Deng S, Green S R, Gianchandani Y B. A 3D-printed miniature magnetron gauge for ultra-high vacuum environments[J]. Vacuum, 2018:264-270
|
[18] |
Kendall B R F, Drubetsky E. Compact wide-range coldcathode gauges[J]. Journal of Vacuum Science & Technology A,2000,18(4):1724−1729
|
[19] |
Hioki K. High performance hot-deformed Nd-Fe-B magnets[J]. Science and Technology of Advanced Materials,2021,12(31):72−84
|
[20] |
何炜, 王仁康, 耿天鹏. 溅射离子泵的抽速计算[J]. 真空科学与技术学报,1982,4:5−14 (in Chinese)
He W, Wang R K, Geng T P. Calculation of pumping speed for sputtering ion pumps[J]. Chinese Journal of Vacuum Science and Technology,1982,4:5−14
|
[21] |
Stark Y, Frömter R, Stickler D, et al. Sputter yields of single-and polycrystalline metals for application in focused ion beam technology[J]. Journal of Applied Physics,2009,105(1):013542 doi: 10.1063/1.3056161
|
[22] |
Ishikawa Y, Koguchi Y, Odaka K. Outgassing rate of some austenitic stainless steels[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1991,9(2):250−253
|
[23] |
Green S R, Malhotra R, Gianchandani Y B. Sub-Torr chip-scale sputter-ion pump based on a Penning cell array architecture[J]. Journal of microelectromechanical systems,2012,22(2):309−317
|