[1] Liu Y F, Feng J, Bi Y G, et al. Recent developments in flexible organic light-emitting devices[J]. Advanced Materials Technologies,2019,4(1):1800371 doi: 10.1002/admt.201800371
[2] Kim T, Cho K, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics,2011,5(3):176−182 doi: 10.1038/nphoton.2011.12
[3] Zhang W, Eperon G E, Snaith H J. Metal halide perovskites for energy applications[J]. Nature Energy,2016,1(6):16048 doi: 10.1038/nenergy.2016.48
[4] Ju M G, Chen M, Zhou Y Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics[J]. Joule,2018,2(7):1231−1241 doi: 10.1016/j.joule.2018.04.026
[5] Jang E, Jun S, Jang H, et al. White-light-emitting diodes with quantum dot color converters for display backlights[J]. Advanced Materials,2010,22(28):3076−3080 doi: 10.1002/adma.201000525
[6] Zhang B B, Luo Y, Mai C H, et al. Effects of ZnMgO electron transport layer on the performance of InP-Based inverted quantum dot light-emitting diodes[J]. Nanomaterials,2021,11(5):1246 doi: 10.3390/nano11051246
[7] Baker J L, Jimison L H, Mannsfeld S, et al. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector[J]. Langmuirl,2010,26(11):9146−9151 doi: 10.1021/la904840q
[8] Bao Z, Wang W G, Tsai H Y, et al. Photo-/electro-luminescence enhancement of CsPbX3 (X = Cl, Br, or I) perovskite quantum dots via thiocyanate surface modification[J]. Journal of Materials Chemistry C,2020,8(3):1065−1071 doi: 10.1039/C9TC05448K
[9] Niu G D, Li W Z, Meng F Q, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A,2014,2(3):705−710 doi: 10.1039/C3TA13606J
[10] Quarti C, Grancini G, Mosconi E, et al. The raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of Theory and Experiment[J]. The journal of physical chemistry letters,2014,5(2):279−284 doi: 10.1021/jz402589q
[11] Liu W B, Jiang Z Y, Liu P, et al. Perovskite phase analysis by SEM facilitating efficient quasi-2D perovskite light-emitting device designs[J]. Advanced Optical Materials,2022,10(16):2200518 doi: 10.1002/adom.202200518
[12] Jitsui Y, Ohtani N. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes[J]. Nanoscale Research Letters,2012,7(1):591 doi: 10.1186/1556-276X-7-591
[13] Yang R, Zhang L, Cao Y, et al. Inhomogeneous degradation in metal halide perovskites[J]. Applied physics letters,2017,111(7):073302 doi: 10.1063/1.4999630
[14] Frischeisen J, Yokoyama D, Adachi C, et al. Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements[J]. Applied Physics Letters,2010,96(7):73302 doi: 10.1063/1.3309705
[15] Hänisch C, Lenk S, Reineke S. Refined setup for angle-resolved photoluminescence spectroscopy of thin films[J]. Physical Review Applied,2020,14(6):064036 doi: 10.1103/PhysRevApplied.14.064036
[16] Archer E, Hillebrandt S, Keum C, et al. Accurate efficiency measurements of organic light-emitting diodes via angle-resolved spectroscopy[J]. Advanced Optical Materials,2021,9(1):2000838 doi: 10.1002/adom.202000838
[17] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050−6051 doi: 10.1021/ja809598r
[18] Kim M, Jeong J, Lu H, et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science,2022,375(6578):302−306 doi: 10.1126/science.abh1885
[19] Min H, Lee D Y, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature,2021,598(7881):444−450 doi: 10.1038/s41586-021-03964-8
[20] Duong T, Nguyen T, Huang K, et al. Bulk incorporation with 4-Methylphenethylammonium chloride for efficient and stable methylammonium-free perovskite and perovskite-silicon tandem solar cells[J]. Advanced Energy Materials,2023,13(9):2203607 doi: 10.1002/aenm.202203607
[21] Aydin E, Ugur E, Yildirim B K, et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells[J]. Nature,2023,623(7988):732−738 doi: 10.1038/s41586-023-06667-4
[22] Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Advanced Energy Materials,2016,6(8):1502458 doi: 10.1002/aenm.201502458
[23] Yang J M, Liu X J, Zhang Y X, et al. Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell[J]. Nano Energy,2018,54:218−226 doi: 10.1016/j.nanoen.2018.10.011
[24] Bryant D, Aristidou N, Pont S, et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy & Environmental Science,2016,9(5):1655−1660
[25] Grancini G, Roldan-Carmona C, Zimmermann I, et al. One-Year stable perovskite solar cells by 2D/3D interface engineering[J]. Nature Communications,2017,8:15684 doi: 10.1038/ncomms15684
[26] Hu J T, Chen P, Luo D Y, et al. Tracking the evolution of materials and interfaces in perovskite solar cells under an electric field[J]. Communications Materials,2022,3(1):1−8 doi: 10.1038/s43246-021-00223-1
[27] Rizzo A, Lamberti F, Buonomo M, et al. Understanding lead iodide perovskite hysteresis and degradation causes by extensive electrical characterization[J]. Solar Energy Materials and Solar Cells,2019,189:43−52 doi: 10.1016/j.solmat.2018.09.021
[28] Raynaud C, Nguyen D M, Dheilly N, et al. Optical beam induced current measurements: principles and applications to SiC device characterization[J]. Physica Status Solidi (A),2009,206(10):2273−2283 doi: 10.1002/pssa.200825183
[29] Zhuo G Y, Banik S, Kao F J, et al. An insight into optical beam induced current microscopy: Concepts and applications[J]. Microscopy Research and Technique,2022,85(11):3495−3513 doi: 10.1002/jemt.24212
[30] Alberi K, Fluegel B, Moutinho H, et al. Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging[J]. Nature Communications,2013,4:2699 doi: 10.1038/ncomms3699
[31] Teal A, Dore J, Varlamov S. Photoluminescence imaging of thin film silicon on glass[J]. Solar Energy Materials and Solar Cells,2014,130:1−5 doi: 10.1016/j.solmat.2014.06.024
[32] Yu B, Zhang C, Chen L, et al. Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals[J]. Nanophotonics (Berlin, Germany),2021,10(8):1943−1965
[33] Vaynzof Y, Bakulin A A, Gelinas S, et al. Direct observation of photoinduced bound charge-pair states at an organic-inorganic semiconductor interface[J]. Physical Review Letters,2012,108(24):246605 doi: 10.1103/PhysRevLett.108.246605
[34] Bauer M, Aeschlimann M. Dynamics of excited electrons in metals, thin films and nanostructures[J]. Journal Of Electron Spectroscopy and Related Phenomena,2002,124(2):225−243
[35] Fukumoto K, Onda K, Yamada Y, et al. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors[J]. Review of Scientific Instruments,2014,85(8):83705 doi: 10.1063/1.4893484
[36] Jakowetz A C, Bohm M L, Zhang J, et al. What controls the rate of ultrafast charge transfer and charge separation efficiency in organic photovoltaic blends[J]. Journal of the American Chemical Society,2016,138(36):11672−11679 doi: 10.1021/jacs.6b05131
[37] Tanaka I, Tokito S. Precise measurement of external quantum efficiency of organic light-emitting devices[J]. Japanese Journal of Applied Physics,2004,43(11A):7733−7736 doi: 10.1143/JJAP.43.7733
[38] Flämmich M, Gather M C, Danz N, et al. Orientation of emissive dipoles in OLEDs: Quantitative in situ analysis[J]. Organic Electronics,2010,11(6):1039−1046 doi: 10.1016/j.orgel.2010.03.002
[39] Nowy S, Frischeisen J, Brütting W, et al. Simulation based optimization of light-outcoupling in organic light-emitting diodes[C]//Organic Light Emitting Materials and Devices XIII, August 27, 2009, San Diego, California, United States. SPIE Photonic Devices + Applications, 2009: 74151C
[40] Watanabe Y, Yokoyama D, Koganezawa T, et al. Control of molecular orientation in organic semiconductor films using weak hydrogen bonds[J]. Advanced Materials,2019,31(18):e1808300 doi: 10.1002/adma.201808300
[41] Wang W C, Nakano K, Hsu C S, et al. Synthesis of 2, 5, 8-Tris(1-phenyl-1H-benzo[d]imidazol-2-yl) benzo [1, 2-b: 3, 4-b′: 5, 6-b″] Trithiophenes and Their Spontaneous Orientation Polarization in Thin Films[J]. ACS Applied Materials & Interfaces,2023,15(16):20294−20301
[42] Ko I J, Lee H, Park J H, et al. An accurate measurement of the dipole orientation in various organic semiconductor films using photoluminescence exciton decay analysis[J]. Physical Chemistry Chemical Physics,2019,21(13):7083−7089 doi: 10.1039/C9CP00965E
[43] Penninck L, Steinbacher F, Krause R, et al. Determining emissive dipole orientation in organic light emitting devices by decay time measurement[J]. Organic Electronics,2012,13(12):3079−3084 doi: 10.1016/j.orgel.2012.09.014
[44] Kojima K, Chichibu S F. Correlation between the internal quantum efficiency and photoluminescence lifetime of the near-band-edge emission in a ZnO single crystal grown by the hydrothermal method[J]. Applied Physics Express,2020,13(12):121005 doi: 10.35848/1882-0786/abcd73
[45] Kojima K, Ikemura K, Matsumori K, et al. Internal quantum efficiency of radiation in a bulk CH3NH3PbBr3 perovskite crystal quantified by using the omnidirectional photoluminescence spectroscopy[J]. APL Materials,2019,7(7):71116 doi: 10.1063/1.5110652
[46] Enomoto S, Tagami T, Ueda Y, et al. Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures[J]. Light-Science & Applications,2022,11(1):8
[47] Wu J Z, Shi X L, Long H, et al. Large Rabi splitting in InGaN quantum wells microcavity at room temperature[J]. Materials Research Express,2019,6(7):76204 doi: 10.1088/2053-1591/ab1a05
[48] Fu Y, Liu H, Yang D Z, et al. Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation[J]. Science Advances,2021,7(43):eabj2504 doi: 10.1126/sciadv.abj2504
[49] Jeon S O, Lee K H, Kim J S, et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes[J]. Nature Photonics,2021,15(3):208−215 doi: 10.1038/s41566-021-00763-5
[50] Wada Y, Nakagawa H, Matsumoto S, et al. Organic light emitters exhibiting very fast reverse intersystem crossing[J]. Nature Photonics,2020,14(10):643−649 doi: 10.1038/s41566-020-0667-0
[51] Goushi K, Yoshida K, Sato K, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion[J]. Nature Photonics,2012,6(4):253−258 doi: 10.1038/nphoton.2012.31
[52] Banappanavar G, Vaidya S, Bothra U, et al. Novel optoelectronic technique for direct tracking of ultrafast triplet excitons in polymeric semiconductor[J]. Applied Physics Reviews,2021,8(3):31415 doi: 10.1063/5.0054583
[53] Jiang M, Tang K, Wan P, et al. A single microwire near-infrared exciton-polariton light-emitting diode[J]. Nanoscale,2021,13(3):1663−1672 doi: 10.1039/D0NR07305A
[54] Xu H, Xu J, Jiang M, et al. Exciton-polariton light-emitting diode based on a single ZnO superlattice microwire heterojunction with performance enhanced by Rh nanostructures[J]. Physical Chemistry Chemical Physics,2023,25(7):5836−5848 doi: 10.1039/D2CP05446A
[55] Dokiya S, Mizuno H, Mizuno H, et al. Strong exciton-photon coupling in organic microcavity electroluminescence devices with thiophene/phenylene co-oligomer derivatives[J]. Applied Physics Express,2019,12(11):111002 doi: 10.7567/1882-0786/ab47b9
[56] Auer-Berger M, Tretnak V, Sommer C, et al. Multipitched plasmonic nanoparticle grating for broadband light enhancement in white light-emitting organic diodes[J]. Applied Physics A,2022,128(9):751 doi: 10.1007/s00339-022-05854-w
[57] Song Z, Werner J, Shrestha N, et al. Probing photocurrent nonuniformities in the subcells of monolithic Perovskite/Silicon tandem solar cells[J]. The Journal of Physical Chemistry Letters,2016,7(24):5114−5120 doi: 10.1021/acs.jpclett.6b02415
[58] Mundt L E, Kwapil W, Yakoob M A, et al. Quantitative local loss analysis of blade-coated perovskite solar cells[J]. IEEE Journal of Photovoltaics,2019,9(2):452−459 doi: 10.1109/JPHOTOV.2018.2888835
[59] Ostrowski D P, Glaz M S, Goodfellow B W, et al. Mapping spatial heterogeneity in Cu (In 1−x Ga x ) Se 2 nanocrystal-based photovoltaics with scanning photocurrent and fluorescence microscopy[J]. Small,2010,6(24):2832−2836 doi: 10.1002/smll.201001274
[60] Carstensen J, Popkirov G, Bahr J, et al. CELLO: an advanced LBIC measurement technique for solar cell local characterization[J]. Solar Energy Materials and Solar Cells,2003,76(4):599−611 doi: 10.1016/S0927-0248(02)00270-2
[61] Wagner J, Schütt A, Carstensen J, et al. Series resistance contribution of majority carriers in CELLO impedance analysis: Influence of wafer thickness variation[J]. Solar Energy Materials and Solar Cells,2016,146:129−134 doi: 10.1016/j.solmat.2015.11.029
[62] Yao Y Q, Wang G, Wu F, et al. The interface degradation of planar organic–inorganic perovskite solar cell traced by light beam induced current (LBIC)[J]. RSC Advances,2017,7(68):42973−42978 doi: 10.1039/C7RA06423C
[63] Song Z N, Abate A, Watthage S C, et al. Perovskite solar cell stability in humid air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System[J]. Advanced Energy Materials,2016,6(19):1600846 doi: 10.1002/aenm.201600846
[64] Galagan Y, Zimmermann B, Coenen E W C, et al. Current collecting grids for ITO-Free solar cells[J]. Advanced Energy Materials,2012,2(1):103−110 doi: 10.1002/aenm.201100552
[65] Rivière G A, Simon J, Escoubas L, et al. Photo-electrical characterizations of plastic solar modules[J]. Solar Energy Materials and Solar Cells,2012,102:19−25 doi: 10.1016/j.solmat.2012.01.030
[66] Quan L, Xie K, Liu Y, et al. Camera enhanced compressive light beam induced current sensing for efficient defect detection in photovoltaic cells[J]. Solar Energy,2019,183:212−217 doi: 10.1016/j.solener.2019.02.055
[67] Bui A D, Nguyen D, Fell A, et al. Spatially resolved power conversion efficiency for perovskite solar cells via bias-dependent photoluminescence imaging[J]. Cell Reports Physical Science,2023,4(11):101641 doi: 10.1016/j.xcrp.2023.101641
[68] Dasgupta A, Mahesh S, Caprioglio P, et al. Visualizing macroscopic inhomogeneities in perovskite solar cells[J]. ACS Energy Letters,2022,7(7):2311−2322 doi: 10.1021/acsenergylett.2c01094
[69] Behera S, Kp S, Khan A, et al. Optimization of front metal contact design of Industrial Si solar cells using photoluminescence imaging technique[J]. Materials Today: Proceedings,2021,39:1925−1929 doi: 10.1016/j.matpr.2020.08.368
[70] Wagner L, Schygulla P, Herterich J P, et al. Revealing fundamentals of charge extraction in photovoltaic devices through potentiostatic photoluminescence imaging[J]. Matter,2022,5(7):2352−2364 doi: 10.1016/j.matt.2022.05.024
[71] Karthick S, Velumani S, Bouclé J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance[J]. Solar Energy,2020,205:349−357 doi: 10.1016/j.solener.2020.05.041
[72] Haunschild J, Glatthaar M, Kasemann M, et al. Fast series resistance imaging for silicon solar cells using electroluminescence[J]. Physica Status Solidi (RRL)-Rapid Research Letters,2009,3(7-8):227−229 doi: 10.1002/pssr.200903175
[73] Breitenstein O, Khanna A, Augarten Y, et al. Quantitative evaluation of electroluminescence images of solar cells[J]. Physica Status Solidi (RRL)-Rapid Research Letters,2010,4(1-2):7−9 doi: 10.1002/pssr.200903304
[74] Kasemann M, Reindl L M, Michl B, et al. Contactless qualitative series resistance imaging on solar cells[J]. IEEE Journal of Photovoltaics,2012,2(2):181−183 doi: 10.1109/JPHOTOV.2012.2184524
[75] Zhu Y, Juhl M K, Trupke T, et al. Photoluminescence imaging of silicon wafers and solar cells with spatially inhomogeneous illumination[J]. IEEE Journal of Photovoltaics,2017,7(4):1087−1091 doi: 10.1109/JPHOTOV.2017.2690875
[76] Mahboubi Soufiani A, Zhu Y, Mussakhanuly N, et al. Contactless series resistance imaging of perovskite solar cells via inhomogeneous illumination[J]. Solar RRL,2021,5(12):2100655 doi: 10.1002/solr.202100655
[77] Ye J Z, Byranvand M M, Martinez C O, et al. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward Efficient LEDs and Solar Cells[J]. Angewandte Chemie-International Edition,2021,60(40):21636−21660 doi: 10.1002/anie.202102360
[78] Wang F, Bai S, Tress W, et al. Defects engineering for high-performance perovskite solar cells[J]. Npj Flexible Electronics,2018,2(1):1−14 doi: 10.1038/s41528-018-0035-z
[79] Stolterfoht M, Wolff C M, Márquez J A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells[J]. Nature Energy,2018,3(10):847−854 doi: 10.1038/s41560-018-0219-8
[80] Kartikay P, Sharma A K, Behera S, et al. Visualizing interfacial defect passivation incarbon-based perovskite solar cells[J]. International Journal of Energy Research,2022,46(15):22704−22716 doi: 10.1002/er.857310.1038/s41528-018-0035-z
[81] Othman M, Zhang T, Mcmeekin D P, et al. Structural and photophysical properties of guanidinium-iodide-treated perovskite solar cells[J]. Solar RRL,2023,7(1):2200852 doi: 10.1002/solr.202200852
[82] Liu H G, Ding W C, Huang Q W, et al. Research on online defect detection method of solar cell component based on lightweight convolutional neural network[J]. International Journal of Photoenergy,2021,2021:1−13
[83] Lian Y L, Sun J Y, Jiang L. Probing electron and lattice dynamics by ultrafast electron microscopy: Principles and applications[J]. International Journal of Mechanical System Dynamics,2023,3(3):192−212 doi: 10.1002/msd2.12081
[84] 李耀龙, 刘运全, 龚旗煌. 超高时空分辨光电子显微镜的研究进展(特邀)[J]. 光子学报,2021,50(08):8−20 (in Chinese) Li Y L, Liu Y Q, Gong Q H. Progress on the ultrahigh spatiotemporal-resolved photoemission electron microscopy(Invited)[J]. Acta Photonica Sinica,2021,50(08):8−20
[85] Da B M, Dai Y, Petek H. Ultrafast photoemission electron microscopy: Imaging Plasmons in Space and Time[J]. Chemical Reviews,2020,120(13):6247−6287 doi: 10.1021/acs.chemrev.0c00146
[86] Lyu X, Li Y L, Jiang P Z, et al. Reveal ultrafast electron relaxation across Sub-bands of tellurium by time- and energy-resolved photoemission microscopy[J]. Nano Letters,2023,23(20):9547−9554 doi: 10.1021/acs.nanolett.3c03102
[87] Li B H, Zhang G H, Liang Y, et al. Femtosecond time-resolved spectroscopic photoemission electron microscopy for probing ultrafast carrier dynamics in heterojunctions[J]. Chinese Journal of Chemical Physics,2019,32(4):399−405 doi: 10.1063/1674-0068/cjcp1903044
[88] Doherty T, Winchester A J, Macpherson S, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites[J]. Nature,2020,580(7803):360−366 doi: 10.1038/s41586-020-2184-1
[89] Kosar S, Winchester A J, Doherty T, et al. Unraveling the varied nature and roles of defects in hybrid halide perovskites with time-resolved photoemission electron microscopy[J]. Energy & Environmental Science,2021,14(12):6320−6328
[90] Spektor G, Kilbane D, Mahro A K, et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices[J]. Science,2017,355(6330):1187−1191 doi: 10.1126/science.aaj1699
[91] Zenz C, Lanzani G, Cerullo G, et al. Dissociation of hot excitons in ladder-type polymer light-emitting diodes[J]. Chemical Physics Letters,2001,341(1):63−69
[92] Brazgun F F, Nadtochenko V A, Rubtsov I V, et al. Dynamics of geminate charge separation in liquid methylcyclohexane studied by the photoassisted ion pair separation technique[J]. Chemical Physics,1996,211(1):469−488
[93] Frankevich E, Ishii H, Hamanaka Y, et al. Formation of polaron pairs and time-resolved photogeneration of free charge carriers in π-conjugated polymers[J]. Physical Review B,2000,62(4):2505−2515 doi: 10.1103/PhysRevB.62.2505
[94] Coropceanu V, Chen X, Wang T, et al. Charge-transfer electronic states in organic solar cells[J]. Nature Reviews Materials,2019,4(11):689−707 doi: 10.1038/s41578-019-0137-9
[95] Jailaubekov A E, Willard A P, Tritsch J R, et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics[J]. Nature Materials,2013,12(1):66−73 doi: 10.1038/nmat3500
[96] Tamura H, Burghardt I. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation[J]. Journal of the American Chemical Society,2013,135(44):16364−16367 doi: 10.1021/ja4093874
[97] Balzer D, Kassal I. Even a little delocalization produces large kinetic enhancements of charge-separation efficiency in organic photovoltaics[J]. Science Advances,2022,8(32):eabl9692 doi: 10.1126/sciadv.abl9692
[98] Bakulin A A, Rao A, Pavelyev V G, et al. The role of driving energy and delocalized States for charge separation in organic semiconductors[J]. Science,2012,335(6074):1340−1344 doi: 10.1126/science.1217745
[99] Bakulin A A, Neutzner S, Bakker H J, et al. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices[J]. ACS Nano,2013,7(10):8771−8779 doi: 10.1021/nn403190s
[100] Pan J X, Chen Z M, Zhang T K, et al. Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy[J]. Nature Communications,2023,14(1):8000 doi: 10.1038/s41467-023-43852-5
[101] Morgenstern F S F, Böhm M L, Kist R J P, et al. Charge generation and electron-trapping dynamics in hybrid nanocrystal-polymer solar cells[J]. Journal of physical chemistry. C,2016,120(34):19064−19069 doi: 10.1021/acs.jpcc.6b07591
[102] Jakob D S, Li N X, Zhou H P, et al. Integrated tapping mode kelvin probe force microscopy with photoinduced force microscopy for correlative chemical and surface potential mapping[J]. Small,2021,17(37):e2102495 doi: 10.1002/smll.202102495
[103] Lin Y D, Gao T N, Pan X Y, et al. Local defects in colloidal quantum dot thin films measured via spatially resolved multi-modal optoelectronic spectroscopy[J]. Advanced Materials,2020,32(11):1906602 doi: 10.1002/adma.201906602
[104] Kobbekaduwa K, Shrestha S, Adhikari P, et al. In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions[J]. Nature Communications,2021,12(1):1636 doi: 10.1038/s41467-021-21946-2
[105] Sha H M, Han J, Wang F, et al. Probing carrier trapping and hysteresis at perovskite grain boundaries via in situ characterization[J]. Optical Materials,2023,139:113817 doi: 10.1016/j.optmat.2023.113817
[106] Ji K Y, Lin W Z, Sun Y Q, et al. Self-supervised deep learning for tracking degradation of perovskite light-emitting diodes with multispectral imaging[J]. Nature Machine Intelligence,2023,5(11):1225−1235 doi: 10.1038/s42256-023-00736-z
[107] 秦楡禄, 王睿, 刘运全. 超高时空和能量分辨光电子成像研究进展[J]. 中国科学: 物理学力学天文学, 2023, 53(10): 21-32 (in Chinese) Qin Y L, Wang R, Liu Y Q. Ultrafast photoelectron imaging with high spatiotemporal and energy resolution[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2023, 53(10): 21-32