[1] Wu S L, Li X D, Jiang P M, et al. Dewatering characteristics of waste slurry from pipe jacking based on improved vacuum filtration method[J]. Tunnelling and Underground Space Technology,2022,130:104727 doi: 10.1016/j.tust.2022.104727
[2] Höfgen E, Kühne S, Peuker U A, et al. A comparison of filtration characterisation devices for compressible suspensions using conventional filtration theory and compressional rheology[J]. Powder Technology,2019,346:49−56 doi: 10.1016/j.powtec.2019.01.056
[3] Nguyen C V, Nguyen A V, Doi A, et al. Advanced solid-liquid separation for dewatering fine coal tailings by combining chemical reagents and solid bowl centrifugation[J]. Separation and Purification Technology,2021,259:118172 doi: 10.1016/j.seppur.2020.118172
[4] Rögener F. Filtration technology for beer and beer yeast treatment[J]. IOP Conference Series: Earth and Environmental Science,2021,941(1):012016 doi: 10.1088/1755-1315/941/1/012016
[5] Li B Y, Dobosz K M, Zhang H T, et al. Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods[J]. Chemical Engineering Science,2019,208:115162 doi: 10.1016/j.ces.2019.115162
[6] Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress,1952,48(2):89−94
[7] 刘洋, 赵立新, 周龙大, 等. 基于多孔跃迁模型的流体阻力压降特性研究[J]. 机床与液压,2022,50(7):17−26 (in Chinese) doi: 10.3969/j.issn.1001-3881.2022.07.004 Liu Y, Zhao L X, Zhou L D, et al. Research on the fluid resistance pressure drop characteristics based on porous jump model[J]. Machine Tool & Hydraulics,2022,50(7):17−26 doi: 10.3969/j.issn.1001-3881.2022.07.004
[8] 杨中庚. 多孔介质流动特性研究[D]. 包头: 内蒙古科技大学, 2019 (in Chinese) Yang Z G. Flow characteristics of porous media[D]. Baotao: Inner Mongolia University of Science & Technology, 2019
[9] 陈竹筠, 万霖, 车刚, 等. 基于玉米通风阻力试验的Ergun模型修正[J]. 农机化研究,2019,41(11):172−177,184 (in Chinese) doi: 10.3969/j.issn.1003-188X.2019.11.030 Chen Z J, Wan L, Che G, et al. Correction of Ergun model based on maize ventilation resistance test[J]. Journal of Agricultural Mechanization Research,2019,41(11):172−177,184 doi: 10.3969/j.issn.1003-188X.2019.11.030
[10] 毛迪凡. 孔隙介质渗流基本方程的改进[D]. 武汉: 中国地质大学, 2012 (in Chinese) Mao D F. The improvement of the porous media seepage equation[D]. Wuhan: China University of Geosciences, 2012
[11] 马培勇, 唐志国, 蔡万大. 气流通过泡沫陶瓷的流阻实验与模型研究[J]. 天然气工业,2010,30(11):97−101 (in Chinese) doi: 10.3787/j.issn.1000-0976.2010.11.025 Ma P Y, Tang Z G, Cai W D. An experimental study and modeling on the flow resistance of airflow through foam ceramic[J]. Natural Gas Industry,2010,30(11):97−101 doi: 10.3787/j.issn.1000-0976.2010.11.025
[12] 吴国忠, 邢永强, 吕妍, 等. 多孔介质内油水流动阻力系数实验分析[J]. 实验技术与管理,2016,33(10):34−37 (in Chinese) Wu G Z, Xing Y Q, Lü Y, et al. Experimental analysis of resistance coefficient of oil and water flow in porous media[J]. Experimental Technology and Management,2016,33(10):34−37
[13] 刘晓明, 刘威, 李龙女, 等. 基于改进神经网络和遗传算法的真空灭弧室优化设计[J]. 真空科学与技术学报,2020,40(4):359−364 (in Chinese) Liu X M, Liu W, Li L N, et al. Optimal design of vacuum interrupter based on improved neural network and genetic algorithm[J]. Chinese Journal Vacuum Science and Technology,2020,40(4):359−364
[14] 陈志立, 梁帅, 李国浩, 等. 基于不同神经网络的DLC薄膜综合性能预测的对比研究[J]. 真空科学与技术学报,2023,43(8):665−673 (in Chinese) Chen Z L, Liang S, Li G H, et al. Comparative study on comprehensive properties prediction of DLC thin films based on different neural networks[J]. Chinese Journal of Vacuum Science and Technology,2023,43(8):665−673
[15] 李佳. 基于机器学习的多孔介质渗透率预测研究[D]. 杭州: 浙江大学, 2019 (in Chinese) Li J. A machine learning-based approach for permeability prediction of porous media[D]. Hangzhou: Zhejiang University, 2019
[16] 王依诚, 姜汉桥, 于馥玮, 等. 基于机器学习的数字岩心孔渗预测方法研究[J]. 石油科学通报,2019,4(4):354−363 (in Chinese) doi: 10.3969/j.issn.2096-1693.2019.04.032 Wang Y C, Jiang H Q, Yu F W, et al. Researches on the pore permeability prediction method of 3D digital cores based on machine learning[J]. Petroleum Science Bulletin,2019,4(4):354−363 doi: 10.3969/j.issn.2096-1693.2019.04.032
[17] Zolotukhin A B, Gayubov A T. Machine learning in reservoir permeability prediction and modelling of fluid flow in porous media[J]. IOP Conference Series: Materials Science and Engineering,2019,700(1):012023 doi: 10.1088/1757-899X/700/1/012023
[18] Al Khalifah H, Glover P W J, Lorinczi P. Permeability prediction and diagenesis in tight carbonates using machine learning techniques[J]. Marine and Petroleum Geology,2020,112:104096 doi: 10.1016/j.marpetgeo.2019.104096
[19] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016 (in Chinese) Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016
[20] Ileberi E, Sun Y X, Wang Z H. A machine learning based credit card fraud detection using the GA algorithm for feature selection[J]. Journal of Big Data,2022,9(1):24 doi: 10.1186/s40537-022-00573-8
[21] Wu J S, Yu B M. A fractal resistance model for flow through porous media[J]. International Journal of Heat and Mass Transfer,2007,50(19-20):3925−3932 doi: 10.1016/j.ijheatmasstransfer.2007.02.009
[22] Tan Y W, Guo L, Gao H L, et al. Deep coupled joint distribution adaptation network: a method for intelligent fault diagnosis between artificial and real damages[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:3507212
[23] 马卫国, 李晨, 聂玲. 基于EDEM-Fluent耦合方法的负压筛分堵塞分析[J]. 长江大学学报(自然科学版),2022,19(2):72−79 (in Chinese) Ma W G, Li C, Nie L. Analysis of negative pressure screening blockage based on EDEM-Fluent coupling method[J]. Journal of Yangtze University (Natural Science Edition),2022,19(2):72−79
[24] Sagi O, Rokach L. Explainable decision forest: transforming a decision forest into an interpretable tree[J]. Information Fusion,2020,61:124−138 doi: 10.1016/j.inffus.2020.03.013
[25] 姜少飞, 邬天骥, 彭翔, 等. 基于XGBoost特征提取的数据驱动故障诊断方法[J]. 中国机械工程,2020,31(10):1232−1239 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.10.015 Jiang S F, Wu T J, Peng X, et al. Data driven fault diagnosis method based on XGBoost feature extraction[J]. China Mechanical Engineering,2020,31(10):1232−1239 doi: 10.3969/j.issn.1004-132X.2020.10.015
[26] 刘晓静, 陈佳萍, 章易程, 等. 基于热流场仿真的井状通路暖气垫的结构优化[J]. 真空科学与技术学报,2019,39(8):725−731 (in Chinese) Liu X J, Chen J P, Zhang Y C, et al. Design optimization of heating-pad with hot-air path in square-grid shape for road surface deicing: a simulation study[J]. Chinese Journal of Vacuum Science and Technology,2019,39(8):725−731