[1] 曹希文, 张雅希, 杨小国, 等. 无机薄膜太阳能电池光伏材料的研究进展[J]. 中国陶瓷工业, 2023, 30(1): 48−56 (in Chinese) doi: 10.13958/j.cnki.ztcg.2023.01.009 Cao X W, Zhang Y X, Yang X G, et al. Research progress in photovoltaic materials for inorganic thin film solar cells[J]. China Ceramic Industry, 2023, 30(1): 48−56 doi: 10.13958/j.cnki.ztcg.2023.01.009
[2] 张永伟. 纳米自清洁薄膜在光伏电站中的应用[J]. 太阳能, 2021(12): 43−50 (in Chinese) doi: 10.19911/j.1003-0417.tyn20210608.02 Zhang Y W. Application of nano self-cleaning films in photovoltaic power plants[J]. Solar energy, 2021(12): 43−50 doi: 10.19911/j.1003-0417.tyn20210608.02
[3] Schwarzl T, Heiss W, Kocher-oberlehner G, et al. Plasma etching of IV-VI semiconductor nanostructures[J]. Semiconductor Science and Technology, 1999, 14(2): L11−L14 doi: 10.1088/0268-1242/14/2/003
[4] Boniche I, Morgan B C, Taylor P J, et al. Process development and material characterization of polycrystalline Bi2Te3, PbTe, and PbSnSeTe thin films on silicon for millimeter-scale thermoelectric generators[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008, 26(4): 739−744 doi: 10.1116/1.2841522
[5] Schwarzl T, Heiss W, Springholz G, et al. 6 µm vertical cavity surface emitting laser based on IV-VI semiconductor compounds[J]. Electronics Letters, 2000, 36(4): 322−324 doi: 10.1049/el:20000260
[6] Zimin S P, Gorlachev E S, Amirov I I, et al. Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment[J]. Journal of Physics D: Applied Physics, 2009, 42(16): 165205 doi: 10.1088/0022-3727/42/16/165205
[7] Zimin S P, Gorlachev E S, Amirov I I, et al. Role of threading dislocations during treatment of PbTe films in argon plasma[J]. Semiconductor Science and Technology, 2007, 22(8): 929−932 doi: 10.1088/0268-1242/22/8/018
[8] 罗春峰, 胡健, 陈成, 等. 等离子体溅射对微型钻头表面ta-C涂层结合特性及摩擦性能的影响[J]. 硬质合金, 2023, 40(1): 16−25 (in Chinese) doi: 10.3969/j.issn.1003-7292.2023.01.003 Luo C F, Hu J, Chen C, et al. The effect of plasma sputtering on the bonding characteristics and friction properties of ta-C coating on the surface of micro drill bits[J]. Hard alloy, 2023, 40(1): 16−25 doi: 10.3969/j.issn.1003-7292.2023.01.003
[9] Zimin S P, Amirov I I, Gorlachev E S. RF sputtering of epitaxial lead chalcogenide films in argon and krypton plasma[J]. Semiconductor Science and Technology, 2011, 26(5): 055018 doi: 10.1088/0268-1242/26/5/055018
[10] 金石声. 离子束轰击Si及SiC的计算机模拟[D]. 贵州大学, 2007 (in Chinese) Jin S S. Computer simulation of ion beam bombardment on Si and SiC [D]. Guizhou University, 2007
[11] Mikhailenko M S, Pestov A E, Chkhalo N I, et al. Influence of ion-beam etching by Ar ions with an energy of 200–1000 eV on the roughness and sputtering yield of a single-crystal silicon surface[J]. Applied Optics, 2022, 61(10): 2825−2833 doi: 10.1364/AO.455096
[12] Liu F X, Guo X M, Pu Y K. Electron cooling and plasma density decay in early afterglow of low pressure argon plasmas[J]. Plasma Sources Science and Technology, 2015, 24(3): 034013 doi: 10.1088/0963-0252/24/3/034013
[13] Bondur J A. Dry process technology (reactive ion etching)[J]. Journal of Vacuum Science and Technology, 1976, 13(5): 1023−1029
[14] 杨元瑞. 聚焦离子束刻蚀硅表面的微观效应模拟分析[D]. 东南大学, 2017 (in Chinese) Yang Y R. Simulation analysis of microscopic effects in focused ion beam etching of silicon surface [D]. Southeast University, 2017
[15] 谢进, 江素华, 王家楫, 等. 聚焦离子束刻蚀性能的研究[J]. 半导体学报, 2001(2): 151−155 (in Chinese) Xie J, Jiang S H, Wang J J, et al. A Study on the Performance of Focused Ion Beam Etching[J]. Journal of Semiconductors, 2001(2): 151−155
[16] Frost F, Ziberi B, Schindler A, et al. Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces[J]. Applied Physics A, 2008, 91(4): 551−559 doi: 10.1007/s00339-008-4516-0
[17] 陈智利, 刘卫国. 不同离子束参数诱导单晶硅纳米微结构与光学性能[J]. 红外与激光工程, 2013, 42(9): 2490−2495 (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.09.035 Chen Z L, Liu W G. Different ion beam parameters induce the nanostructures and optical properties of monocrystalline silicon[J]. Infrared and Laser Engineering, 2013, 42(9): 2490−2495 doi: 10.3969/j.issn.1007-2276.2013.09.035
[18] Wagner M, Mayer M, Von toussaint, et al. Simulation of the evolution of rough surfaces by sputtering using the binary collision approximation[J]. Radiation Effects and Defects in Solids, 2022, 177(9-10): 1019−1032 doi: 10.1080/10420150.2022.2098751
[19] 陈智利, 李瑞, 刘卫国. 低能离子束刻蚀单晶硅表面形貌与粗糙度的研究[J]. 西安工业大学学报, 2012, 32(6): 443−446+450 (in Chinese) Chen Z L, Li R, Liu W G. Study on the surface morphology and roughness of low energy ion beam etched single crystal silicon[J]. Journal of Xi'an University of Technology, 2012, 32(6): 443−446+450
[20] 刘峰名. 硅的表面刻蚀、光学性能以及硅钴材料制备的激光拉曼光谱研究[D]. 厦门大学, 2001 (in Chinese) Liu F M. Study on surface etching, optical properties of silicon, and laser raman spectroscopy for preparation of silicon cobalt materials [D]. Xiamen University, 2001
[21] Xu S, Tang X D, Yue Y N, et al. Sub-micron imaging of sub-surface nanocrystalline structure in silicon: Sub-micron imaging of sub-surface nc structure in Si[J]. Journal of Raman Spectroscopy, 2013, 44(11): 1523−1528 doi: 10.1002/jrs.4366
[22] Dipak B, Prasanta K. Tuning wettability of Si surface by ion beam induced silicon nitride formation and nanopatterning[J]. Surface and Coatings Technology, 2020, 385: 125369 doi: 10.1016/j.surfcoat.2020.125369
[23] Garg S K, Datta D P, Ghatak J, et al. Tunable wettability of Si through surface energy engineering by nanopatterning[J]. RSC Advances, 2016, 6(54): 48550−48557 doi: 10.1039/C6RA04906K
[24] Dipak B, Prasanta K. Physicochemical variation of mica surface by low energy ion beam irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 422: 41−46 doi: 10.1016/j.nimb.2018.02.030
[25] Adrian K, MonikA F, Ryosuke O, et al. Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation[J]. The Journal of Chemical Physics, 2011, 134(10): 104705 doi: 10.1063/1.3561292
[26] Wang M, Yang Z, Yang C J, et al. The investigation of mechanical and thermal properties of super-hydrophobic nitinol surfaces fabricated by hybrid methods of laser irradiation and carbon ion implantation[J]. Applied Surface Science, 2020, 527: 146889 doi: 10.1016/j.apsusc.2020.146889
[27] Pawasuth S, Woraphan C, Win B, et al. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization[J]. Biosensors and Bioelectronics, 2015, 67: 134−138 doi: 10.1016/j.bios.2014.07.057
[28] Zhang C Z, Peng Z G, Cui X Y, et al. Reversible superhydrophilicity and hydrophobicity switching of V2O5 thin films deposited by magnetron sputtering[J]. Applied Surface Science, 2018, 433: 1094−1099 doi: 10.1016/j.apsusc.2017.10.146