[1] |
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451−10453 doi: 10.1073/pnas.0502848102
|
[2] |
Compton O C, Nguyen S B T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6): 711−723 doi: 10.1002/smll.200901934
|
[3] |
Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from Wafer-Scale Epitaxial Graphene[J]. Science, 2010, 327(5966): 662−662 doi: 10.1126/science.1184289
|
[4] |
Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. Mrs Bulletin, 2012, 37(12): 1273−1281 doi: 10.1557/mrs.2012.203
|
[5] |
Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D Network Nanostructure for Enhanced Hydrogen Storage[J]. Nano letters, 2008, 8(10): 3166−3170 doi: 10.1021/nl801417w
|
[6] |
Abdullah M F, Nazim N J N B, Hussin M R M, et al. Modulated Ar/CH4 plasma by metal shield for enhancing the PECVD growth of vertical graphene[J]. International journal of nanoscience, 2022, 21(04): 2250023 doi: 10.1142/S0219581X22500235
|
[7] |
Jeong W, Kim S, Lee Y, et al. Contribution of ion energy and flux on high-aspect ratio SiO2 etching characteristics in a dual-frequency capacitively coupled Ar/C4F8 plasma: individual ion energy and flux controlled[J]. Materials, 2023, 16(10): 3820 doi: 10.3390/ma16103820
|
[8] |
Yuan Q H, Xin Y, Yin G Q, et al. Effect of low-frequency power on dual-frequency capacitively coupled plasmas[J]. Journal of Physics D Applied Physics, 2008, 41(20): 205209 doi: 10.1088/0022-3727/41/20/205209
|
[9] |
Su J, Li C. Effect of plasma-enhanced chemical vapor deposition (PECVD) graphene content on the properties of EPDM/graphene composites[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(7): 9065−9073 doi: 10.1007/s10854-021-05575-5
|
[10] |
Zhang P B, Jiang X Y, Fang X H, et al. Si substrates playing two opposing roles in the process of preparing graphene by PECVD-ScienceDirect[J]. Applied Surface Science, 2020, 501: 144404 doi: 10.1016/j.apsusc.2019.144404
|
[11] |
Ghosh S, Ganesan K, Polaki S R, et al. Influence of substrate on nucleation and growth of vertical graphene nanosheets[J]. Applied Surface Science, 2015, 349: 576−581
|
[12] |
Wang J, Zhu M, Outlaw R A, et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2004, 42(14): 2867−2872 doi: 10.1016/j.carbon.2004.06.035
|
[13] |
Wassei J K, Mecklenburg M, Torres J A, et al. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity[J]. Small, 2012, 8(9): 1415−1422 doi: 10.1002/smll.201102276
|
[14] |
Cui L F, Chen J T, Yang B J, et al. RF-PECVD synthesis of carbon nanowalls and their field emission properties[J]. Applied Surface Science, 2015, 357(12): 1−7
|
[15] |
Kim S Y, Choi W S, Lee J H, et al. Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD[J]. Materials Research Bulletin, 2014, 58(10): 112−116
|
[16] |
Terasawa T O, Saiki K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition[J]. Carbon, 2012, 50(3): 869−874 doi: 10.1016/j.carbon.2011.09.047
|
[17] |
Krivchenko V, Shevnin P, Pilevsky A, et al. Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD[J]. Journal of Materials Chemistry, 2012, 22(32): 16458−16464 doi: 10.1039/c2jm32263c
|
[18] |
Kim H K, Mattevi C, Calvo M R, et al. Activation energy paths for graphene nucleation and growth on Cu[J]. Acs Nano, 2012, 6(4): 3614−3623 doi: 10.1021/nn3008965
|
[19] |
Regmi M, Chisholm M F, Eres G. The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu[J]. Carbon, 2012, 50(1): 134−141 doi: 10.1016/j.carbon.2011.07.063
|
[20] |
Davami K, Shaygan M, Kheirabi N, et al. Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2014, 72: 372−380 doi: 10.1016/j.carbon.2014.02.025
|
[21] |
Subrata G, Polaki S R, Niranjan K, et al. Process-specific mechanisms of vertically oriented graphene growth in plasmas[J]. Beilstein Journal of Nanotechnology, 2017, 8(1): 1658−1670
|
[22] |
Guo L C, Zhang Z Y, Sun H, et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD[J]. Carbon An International Journal Sponsored by the American Carbon Society, Carbon, 2018, 129: 456−461
|
[23] |
Cancado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters, 2006, 88(16): 163106 doi: 10.1063/1.2196057
|
[24] |
Lahiri J, Miller T S, Ross A J, et al. Graphene growth and stability at nickel surfaces[J]. New Journal of Physics, 2011, 13(2): 025001 doi: 10.1088/1367-2630/13/2/025001
|