[1] |
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences,2005,102(30):10451−10453 doi: 10.1073/pnas.0502848102
|
[2] |
Compton O C, Nguyen S B T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small,2010,6(6):711−723 doi: 10.1002/smll.200901934
|
[3] |
Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from Wafer-Scale Epitaxial Graphene[J]. Science,2010,327(5966):662−662 doi: 10.1126/science.1184289
|
[4] |
Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. Mrs Bulletin,2012,37(12):1273−1281 doi: 10.1557/mrs.2012.203
|
[5] |
Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D Network Nanostructure for Enhanced Hydrogen Storage[J]. Nano letters,2008,8(10):3166−3170 doi: 10.1021/nl801417w
|
[6] |
Abdullah M F, Nazim N J N B, Hussin M R M, et al. Modulated Ar/CH4 plasma by metal shield for enhancing the PECVD growth of vertical graphene[J]. International journal of nanoscience,2022,21(04):2250023 doi: 10.1142/S0219581X22500235
|
[7] |
Jeong W, Kim S, Lee Y, et al. Contribution of ion energy and flux on high-aspect ratio SiO2 etching characteristics in a dual-frequency capacitively coupled Ar/C4F8 plasma: individual ion energy and flux controlled[J]. Materials,2023,16(10):3820 doi: 10.3390/ma16103820
|
[8] |
Yuan Q H, Xin Y, Yin G Q, et al. Effect of low-frequency power on dual-frequency capacitively coupled plasmas[J]. Journal of Physics D Applied Physics,2008,41(20):205209 doi: 10.1088/0022-3727/41/20/205209
|
[9] |
Su J, Li C. Effect of plasma-enhanced chemical vapor deposition (PECVD) graphene content on the properties of EPDM/graphene composites[J]. Journal of Materials Science: Materials in Electronics,2021,32(7):9065−9073 doi: 10.1007/s10854-021-05575-5
|
[10] |
Zhang P B, Jiang X Y, Fang X H, et al. Si substrates playing two opposing roles in the process of preparing graphene by PECVD-ScienceDirect[J]. Applied Surface Science,2020,501:144404 doi: 10.1016/j.apsusc.2019.144404
|
[11] |
Ghosh S, Ganesan K, Polaki S R, et al. Influence of substrate on nucleation and growth of vertical graphene nanosheets[J]. Applied Surface Science,2015,349:576−581
|
[12] |
Wang J, Zhu M, Outlaw R A, et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon,2004,42(14):2867−2872 doi: 10.1016/j.carbon.2004.06.035
|
[13] |
Wassei J K, Mecklenburg M, Torres J A, et al. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity[J]. Small,2012,8(9):1415−1422 doi: 10.1002/smll.201102276
|
[14] |
Cui L F, Chen J T, Yang B J, et al. RF-PECVD synthesis of carbon nanowalls and their field emission properties[J]. Applied Surface Science, 2015, 357(12): 1−7
|
[15] |
Kim S Y, Choi W S, Lee J H, et al. Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD[J]. Materials Research Bulletin,2014,58(10):112−116
|
[16] |
Terasawa T O, Saiki K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition[J]. Carbon,2012,50(3):869−874 doi: 10.1016/j.carbon.2011.09.047
|
[17] |
Krivchenko V, Shevnin P, Pilevsky A, et al. Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD[J]. Journal of Materials Chemistry,2012,22(32):16458−16464 doi: 10.1039/c2jm32263c
|
[18] |
Kim H K, Mattevi C, Calvo M R, et al. Activation energy paths for graphene nucleation and growth on Cu[J]. Acs Nano,2012,6(4):3614−3623 doi: 10.1021/nn3008965
|
[19] |
Regmi M, Chisholm M F, Eres G. The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu[J]. Carbon,2012,50(1):134−141 doi: 10.1016/j.carbon.2011.07.063
|
[20] |
Davami K, Shaygan M, Kheirabi N, et al. Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition[J]. Carbon,2014,72:372−380 doi: 10.1016/j.carbon.2014.02.025
|
[21] |
Subrata G, Polaki S R, Niranjan K, et al. Process-specific mechanisms of vertically oriented graphene growth in plasmas[J]. Beilstein Journal of Nanotechnology,2017,8(1):1658−1670
|
[22] |
Guo L C, Zhang Z Y, Sun H, et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD[J]. Carbon An International Journal Sponsored by the American Carbon Society, Carbon,2018,129:456−461
|
[23] |
Cancado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88(16):163106 doi: 10.1063/1.2196057
|
[24] |
Lahiri J, Miller T S, Ross A J, et al. Graphene growth and stability at nickel surfaces[J]. New Journal of Physics,2011,13(2):025001 doi: 10.1088/1367-2630/13/2/025001
|