[1] |
巴德纯, 王晓冬, 刘坤, 等. 现代涡轮分子泵的进展[J]. 真空,2010,47(4):1−6 (in Chinese)
Ba D C, Wang X D, Liu K, et al. Progress in R&D of modern turbo-molecular pumps[J]. Vacuum,2010,47(4):1−6
|
[2] |
Ogiwara N, Yanagibashi T, Hikichi Y, et al. Development of a turbo-molecular pump with a magnetic shield function[J]. Vacuum,2013,98:18−21 doi: 10.1016/j.vacuum.2012.09.024
|
[3] |
Henning J. 2. Trends in the development and use of turbomolecular pumps[J]. Vacuum,1978,28(10-11):391−398 doi: 10.1016/S0042-207X(78)80004-9
|
[4] |
Hucknall D J, Goetz D G. Turbomolecular pumps[J]. Vacuum,1987,37(8):615−620
|
[5] |
Flecher P, 周世敦. 涡轮分子泵的发展近况[J]. 真空与低温,1982,02:59−65 (in Chinese)
Flecher P, Zhou S D. Recent development of turbomolecular pump[J]. Vacuum and Low Temperature,1982,02:59−65
|
[6] |
Han B C, Huang Z Y, Le Y. Design aspects of a large scale turbomolecular pump with active magnetic bearings[J]. Vacuum,2017,142:96−105 doi: 10.1016/j.vacuum.2016.12.010
|
[7] |
Li Y W, Chen X K, Guo W J, et al. Accurate simulation of turbomolecular pumps with modified algorithm by 3d direct simulation monte Carlo method[J]. Vacuum,2014,109:354−359 doi: 10.1016/j.vacuum.2014.03.023
|
[8] |
王晓冬, 张鹏飞, 李博, 等. 分子真空泵研究进展[J]. 真空科学与技术学报,2021,41(9):817−825 (in Chinese)
Wang X D, Zhang P F, Li B, et al. Research progress of molecular vacuum pump[J]. Chinese Journal of Vacuum Science and Technology,2021,41(9):817−825
|
[9] |
舒行军, 郑越青, 陶继忠. 小型涡轮分子泵动叶片设计与制造技术研究[J]. 真空,2013,50(6):43−45 (in Chinese) doi: 10.3969/j.issn.1002-0322.2013.06.011
Shu X J, Zheng Y Q, Tao J Z. Design and manufacturing technology of the vane wheel for small turbo-molecular pump[J]. Vacuum,2013,50(6):43−45 doi: 10.3969/j.issn.1002-0322.2013.06.011
|
[10] |
王晓冬, 巴德纯, 杨乃恒, 等. 涡轮分子泵组合叶列几何参数优化设计方法的研究[J]. 真空,1999,36(1):23−26 (in Chinese)
Wang X D, Ba D C, Yang N H, et al. Research on the optimization design method of the geometry specification of the vane arrangement of the turbomolecular pump[J]. Vacuum,1999,36(1):23−26
|
[11] |
匡永麟, 王晓冬, 张国玉, 等. 涡轮分子泵曲面叶片抽气特性研究[J]. 真空科学与技术学报,2022,42(10):731−736 (in Chinese)
Kuang Y L, Wang X D, Zhang G Y, et al. Pumping characteristics of curved blades of turbomolecular pump[J]. Chinese Journal of Vacuum Science and Technology,2022,42(10):731−736
|
[12] |
谢天意, 谢元华, 窦仁超, 等. 径向微型分子泵结构设计及抽气性能仿真[J]. 航天器环境工程,2021,38(1):25−30 (in Chinese)
Xie T Y, Xie Y H, Dou R C, et al. Structural design of radial micro molecular pump and simulation of its pumping performance[J]. Spacecraft Environment Engineering,2021,38(1):25−30
|
[13] |
陶继忠, 郑越青, 朱建平, 等. 小型涡轮分子泵静叶片设计与成型技术[J]. 真空,2012,49(6):1−3 (in Chinese) doi: 10.3969/j.issn.1002-0322.2012.06.001
Tao J Z, Zheng Y Q, Zhu J P, et al. Design and molding technology of stationary blade for small turbo-molecular pump[J]. Vacuum,2012,49(6):1−3 doi: 10.3969/j.issn.1002-0322.2012.06.001
|
[14] |
蔡飞飞, 任违. 小型涡轮分子泵静叶片冲压成型技术[J]. 制造技术与机床,2016,05:49−51 (in Chinese) doi: 10.3969/j.issn.1005-2402.2016.05.025
Cai F F, Ren W. Punching and molding technology of stationary blade for small turbo-molecular pump[J]. Manufacturing Technology and Machine Tool,2016,05:49−51 doi: 10.3969/j.issn.1005-2402.2016.05.025
|
[15] |
Sun K, Zhang S W, Li Y J, et al. Monte Carlo simulation of gas free molecular flow in turbo molecular pump’s inlet tube[J]. Molecular Simulation,2018,44(15):1261−1269 doi: 10.1080/08927022.2018.1485151
|
[16] |
张以忱, 韩晶雪, 贺佳, 等. 基于Monte Carlo方法的圆截面直角弯管传输几率[J]. 真空科学与技术学报,2013,33(12):1169−1173 (in Chinese) doi: 10.3969/j.issn.1672-7126.2013.12.01
Zhang Y C, Han J X, He J, et al. Monte Carlo simulation of transmission probability of circular, right-angle elbow pipe[J]. Chinese Journal of Vacuum Science and Technology,2013,33(12):1169−1173 doi: 10.3969/j.issn.1672-7126.2013.12.01
|
[17] |
杨乃恒, 王继常, 刘玉岱. 蒙特卡罗法计算涡轮分子泵叶列的传输几率[J]. 东北工学院学报,1984,1:85−90 (in Chinese)
Yang N H, Wang J C, Liu Y D. Monte Carlo calculation of the transmission probability of turbomolecular pump blades[J]. Journal of Northeast Institute of Technology,1984,1:85−90
|
[18] |
张波, 王洁, 尉伟, 等. 蒙特卡罗法计算分子流状态下真空管道的传输几率[J]. 真空科学与技术学报,2014,34(6):571−574 (in Chinese)
Zhang B, Wang J, Wei W, et al. Monte Carlo simulation of transmission probability of molecular gas flow through vacuum pipes[J]. Chinese Journal of Vacuum Science and Technology,2014,34(6):571−574
|
[19] |
匡永麟, 王晓冬, 黄海龙, 等. 涡轮分子泵叶列抽气性能的计算方法改进[J]. 真空科学与技术学报,2022,42(1):26−30 (in Chinese)
Kuang Y L, Wang X D, Huang H L, et al. Improvement of the calculation method of the pumping performance of the turbomolecular pump blade row[J]. Chinese Journal of Vacuum Science and Technology,2022,42(1):26−30
|
[20] |
张鹏飞, 王晓冬, 张磊, 等. 复合分子泵抽气特性算法改进与结构优化[J]. 真空,2018,55(3):1−5 (in Chinese)
Zhang P F, Wang X D, Zhang L, et al. Algorithm improvement for pumping characteristics and structure optimization of compound molecular pump[J]. Vacuum,2018,55(3):1−5
|
[21] |
Tuer T W, Springer G S. A test particle monte Carlo method[J]. Computers and Fluids,1973,1(4):399−417 doi: 10.1016/0045-7930(73)90006-6
|
[22] |
Wang S, Ninokata H, Merzari E, et al. Numerical study of a single blade row in turbomolecular pump[J]. Vacuum,2009,83(8):1106−1117 doi: 10.1016/j.vacuum.2009.01.007
|
[23] |
Hsieh F C, Lin P H, Liu D R, et al. Pumping performance analysis on turbomolecular pump[J]. Vacuum,2012,86(7):830−832 doi: 10.1016/j.vacuum.2011.02.010
|
[24] |
Sengil N. Performance increase in turbomolecular pumps with curved type blades[J]. Vacuum,2012,86(11):1764−1769 doi: 10.1016/j.vacuum.2011.12.018
|