[1] Schamiloglu E. High power microwave sources and applications; proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat No 04CH37535), F, 2004 [C]. IEEE
[2] Xun T, Zhao Y, Yang H, et al. Developments of pulsed electron beam sources for high-power microwave applications[J]. IEEE Access,2020,8:101351−101358 doi: 10.1109/ACCESS.2020.2998088
[3] 荀涛, 杨汉武, 张军, 等. 高性能强流脉冲电子束源关键技术研究[J]. 强激光与粒子束,2020,32(2):7 (in Chinese) Xun T, Yang H W, Zhang J, et al. Development of high performance, high-current pulsed electron beam sources[J]. High power laser and particle beam,2020,32(2):7
[4] Agee F. Evolution of pulse shortening research in narrow band, high power microwave sources[J]. IEEE transactions on plasma science,1998,26(3):235−245 doi: 10.1109/27.700749
[5] 李姝敏, 李永东, 刘震. 相对论返波管中击穿现象粒子模拟[J]. 强激光与粒子束,2017,29(6):16−19 (in Chinese) Li S M, Li Y D, Liu Z. Particle-in-cell simulation of field breakdown in a relativistic backward wave oscillator[J]. High power laser and particle beam,2017,29(6):16−19
[6] 张晓微, 肖仁珍, 陈昌华, 等. 一种提高相对论返波管功率容量的方法[J]. 强激光与粒子束,2011,23(11):3069−3072. (in chinese) doi: 10.3788/HPLPB20112311.3069 Zhang X, Xiao R, Chen C, et al. A method for improving power capability of relativistic backward wave oscillator[J]. High power laser and particle beam,2011,23(11):3069−3072 doi: 10.3788/HPLPB20112311.3069
[7] Krasik Y, Gleizer Z, Yarmolich D, et al. Characterization of the plasma on dielectric fiber (velvet) cathodes[J]. Journal of Applied Physics,2005,98(9):093308 doi: 10.1063/1.2126788
[8] Jang C, Kim T, Lee S, et al. Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors[J]. Nanotechnology,2008,19(34):345203 doi: 10.1088/0957-4484/19/34/345203
[9] Xun T, Zhao X, Li G, et al. High-current, pulsed electron beam sources with SiC nanowire cathodes[J]. Vacuum,2016,125:81−84 doi: 10.1016/j.vacuum.2015.11.023
[10] Wang L, Li C, Yang Y, et al. Large-scale growth of well-aligned SiC tower-like nanowire arrays and their field emission properties[J]. ACS Appl Mater Interfaces,2015,7(1):526−533 doi: 10.1021/am506678x
[11] Zlobinski M, Philipps V, Schweer B, et al. Laser induced desorption as tritium retention diagnostic method in ITER[J]. Fusion Engineering and Design,2011,86(6-8):1332−1335 doi: 10.1016/j.fusengdes.2011.02.030
[12] Lyu Y, Li C, Wu D, et al. Characterization on deuterium retention in tungsten target using spatially resolved laser induced desorption-quadrupole mass spectroscopy[J]. Physica Scripta,2021,96(12):124040 doi: 10.1088/1402-4896/ac2c24
[13] Yehia-Alexe S, Groza A, Serbanescu M, et al. Considerations on hydrogen isotopes release from thin films by laser induced ablation and laser induced desorption techniques[J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2023,208:106774 doi: 10.1016/j.sab.2023.106774
[14] Oelmann J, Gierse N, Li C, et al. Depth-resolved sample composition analysis using laser-induced ablation-quadrupole mass spectrometry and laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2018,144:38−45 doi: 10.1016/j.sab.2018.03.009
[15] Oelmann J, Li C, Brezinsek S, et al. Depth resolved analysis of hydrogen in W7-X graphite components using laser-induced ablation-quadrupole mass spectrometry (LIA-QMS)[J]. Nuclear Materials and Energy,2019,18:153−158 doi: 10.1016/j.nme.2018.12.019
[16] Zhao D, Yi R, Oelmann J, et al. Ex situ analysis of W7-X divertor plasma-facing components by picosecond laser diagnostics[J]. Physica Scripta,2020(T171):014018
[17] Lyu Y, He Z, Wang X, et al. Characterization of helium retention in the inhomogeneous co-deposited layers using a long pulse laser induced ablation-quadrupole mass spectroscopy[J]. Nuclear Materials and Energy,2022,33:101268 doi: 10.1016/j.nme.2022.101268
[18] Li A, Fan Y, Qian B, et al. Outgassing rate analysis of a velvet cathode and a carbon fiber cathode[J]. Journal of Applied Physics,2017,122(18):185901 doi: 10.1063/1.4996649
[19] Shen Y, Zhang H, Xia L, et al. Vacuum outgassing behavior of carbon nanotube cathode with high-intensity pulsed electron emission[J]. Plasma Science and Technology,2015,17(2):129−133 doi: 10.1088/1009-0630/17/2/06