[1] 周盛涛, 罗学东, 蒋楠, 等. 二氧化碳相变致裂技术研究进展与展望 [J]. 工程科学学报, 2021, 43(7): 883–893. doi: 10.13374/j.issn2095-9389.2020.11.05.006 ZHOU S T, LUO X D, JIANG N, et al. A review on fracturing technique with carbon dioxide phase transition [J]. Chinese Journal of Engineering, 2021, 43(7): 883–893. doi: 10.13374/j.issn2095-9389.2020.11.05.006
[2] 郜浩田, 付小龙, 李吉祯, 等. 硝化甘油合成及分析技术研究进展 [J]. 兵器装备工程学报, 2021, 42(11): 1–6. doi: 10.11809/bqzbgcxb2021.11.001 GAO H T, FU X L, LI J Z, et al. Research progress in synthesis and analysis of nitroglycerin [J]. Journal of Ordnance Equipment Engineering, 2021, 42(11): 1–6. doi: 10.11809/bqzbgcxb2021.11.001
[3] ARMAGHANI D J, HAJIHASSANI M, SOHAEI H, et al. Neuro-fuzzy technique to predict air-overpressure induced by blasting [J]. Arabian Journal of Geosciences, 2015, 8(12): 10937–10950. doi: 10.1007/s12517-015-1984-3
[4] ZHANG Z X. Kinetic energy and its applications in mining engineering [J]. International Journal of Mining Science and Technology, 2017, 27(2): 237–244. doi: 10.1016/j.ijmst.2017.01.009
[5] 孙可明, 辛利伟, 王婷婷, 等. 超临界CO2气爆煤体致裂规律模拟研究 [J]. 中国矿业大学学报, 2017, 46(3): 50l–506. doi: 10.13247/j.cnki.jcumt.000669 SUN K M, XIN L W, WANG T T, et al. Simulation research on law of coal fracture caused by supercritical CO2 explosion [J]. Journal of China University of Mining & Technology, 2017, 46(3): 50l–506. doi: 10.13247/j.cnki.jcumt.000669
[6] 孙小明. 液态二氧化碳相变致裂掏槽破岩试验研究 [J]. 煤炭科学技术, 2021, 49(8): 81–87. doi: 10.13199/j.cnki.cst.2021.08.010 SUN X M. Experimental study on cutting and rock breaking by liquid CO2 phase transition fracturing technology [J]. Coal Science and Technology, 2021, 49(8): 81–87. doi: 10.13199/j.cnki.cst.2021.08.010
[7] 黄园月, 尹岚岚, 倪昊, 等. 二氧化碳致裂器研制与应用 [J]. 煤炭技术, 2015, 34(8): 123–124. doi: 10.13301/j.cnki.ct.2015.08.048 HUANG Y Y, YIN L L, NI H, et al. Development and application of carbon dioxide fracturing device [J]. Coal Technology, 2015, 34(8): 123–124. doi: 10.13301/j.cnki.ct.2015.08.048
[8] 尤横, 岳中文, 杨海斌, 等. CO2相变爆破致裂管内压力变化试验研究 [J]. 工程爆破, 2023, 29(5): 105–112. doi: 10.19931/j.EB.20220365 YOU H, YUE Z W, YANG H B, et al. Experimental study on pressure change in cracking tube during process of CO2 phase change blasting [J]. Engineering Blasting, 2023, 29(5): 105–112. doi: 10.19931/j.EB.20220365
[9] 张坤玉, 陈德, 吴昊. 高压气体驱动激波管的数值模拟与参数影响分析 [J]. 高压物理学报, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704 ZHANG K Y, CHEN D, WU H. Numerical simulation and parametric analysis of high-pressure gas-driven shock tube [J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704
[10] 喻健良, 郑阳光, 闫兴清, 等. 工业规模CO2管道大孔泄漏过程中的射流膨胀及扩散规律 [J]. 化工学报, 2017, 68(6): 2298–2305. doi: 10.11949/j.issn.0438-1157.20161614 YU J L, ZHENG Y G, YAN X Q, et al. Under-expanded jets and dispersion during big hole leakage of high pressure CO2 pipeline in industrial scale [J]. CIESC Journal, 2017, 68(6): 2298–2305. doi: 10.11949/j.issn.0438-1157.20161614
[11] ZHANG Y N, DENG J R, DENG H W, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting [J]. International Journal of Damage Mechanics, 2019, 28(7): 1038–1052. doi: 10.1177/1056789518807532
[12] 夏军, 陶良云, 李必红, 等. 二氧化碳液-气相变膨胀破岩技术及应用 [J]. 工程爆破, 2018, 24(3): 50–54. doi: 10.3969/j.issn.1006-7051.2018.03.009 XIA J, TAO L Y, LI B H, et al. Technology and application of the rock breaking by CO2 liquid-gas phase transition and expansion [J]. Engineering Blasting, 2018, 24(3): 50–54. doi: 10.3969/j.issn.1006-7051.2018.03.009
[13] YU B Z, NIU S S, ZHOU S T, et al. Impact pressure characteristics of carbon dioxide phase transition fracturing technique [J]. ACS Omega, 2024, 9(22): 23927–23939. doi: 10.1021/acsomega.4c02026
[14] CAO Y X, ZHANG J S, ZHAI H, et al. CO2 gas fracturing: a novel reservoir stimulation technology in low permeability gassy coal seams [J]. Fuel, 2017, 203: 197–207. doi: 10.1016/j.fuel.2017.04.053
[15] 王长禄, 彭然, 郑义, 等. 煤层液态CO2相变致裂半径预测研究 [J]. 工矿自动化, 2023, 49(10): 110–117. doi: 10.13272/j.issn.1671-251x.2023040076 WANG C L, PENG R, ZHANG Y, et al. Research on the prediction of liquid CO2 phase transition cracking radius in coal seams [J]. Journal of Mine Automation, 2023, 49(10): 110–117. doi: 10.13272/j.issn.1671-251x.2023040076
[16] 张震, 刘高峰, 李宝林, 等. CO2相变致裂煤的纳米孔隙尺度改造效应 [J]. 岩石力学与工程学报, 2023, 42(3): 672–684. doi: 10.13722/j.cnki.jrme.2022.0408 ZHANG Z, LIU G F, LI B L, et al. Transformed effect of nano-pores in coal by CO2 phase transition fracturing [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 672–684. doi: 10.13722/j.cnki.jrme.2022.0408
[17] 李豪君, 张家行, 谯永刚, 等. 液态CO2相变致裂参数及应用效果研究 [J]. 煤炭技术, 2021, 40(10): 149–152. doi: 10.13301/j.cnki.ct.2021.10.035 LI H J, ZHANG J H, QIAO Y G, et al. Study on cracking parameters and application effect of liquid carbon dioxide fracturing [J]. Coal Technology, 2021, 40(10): 149–152. doi: 10.13301/j.cnki.ct.2021.10.035
[18] 宋伟. 复杂环境下地铁施工二氧化碳破岩技术研究 [J]. 铁道勘察, 2020, 46(4): 80–83, 87. doi: 10.19630/j.cnki.tdkc.201911070004 SONG W. Research on carbon dioxide rock breaking technology in subway construction under complicated environment [J]. Railway Investigation and Surveying, 2020, 46(4): 80–83, 87. doi: 10.19630/j.cnki.tdkc.201911070004
[19] 李世安. 二氧化碳致裂技术在地铁车站基坑开挖中的应用 [J]. 市政技术, 2020, 38(4): 258–262, 273. doi: 10.3969/j.issn.1009-7767.2020.04.068 LI S A. Application of carbon dioxide cracking technology in foundation pit excavation of metro station [J]. Municipal Engineering Technology, 2020, 38(4): 258–262, 273. doi: 10.3969/j.issn.1009-7767.2020.04.068
[20] CHANG J, SUN L J, DAI B B, et al. Research on the fracture properties and mechanism of carbon dioxide blasting based on rock-like materials [J]. Minerals, 2023, 13(1): 3. doi: 10.3390/min13010003
[21] 夏祥, 李海波, 王晓炜, 等. 核电工程中的CO2致裂与炸药爆破地表振动传播规律试验研究 [J]. 岩石力学与工程学报, 2021, 40(7): 1350–1356. doi: 10.13722/j.cnki.jrme.2020.1183 XIA X, LI H B, WANG X W, et al. Comparison analysis of ground vibrations induced by CO2 gas fracturing and explosive blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1350–1356. doi: 10.13722/j.cnki.jrme.2020.1183
[22] 孙悦, 陈先猛, 陈攀森, 等. 轻气炮低温靶的结构及液态CO2冲击压缩特性的研究 [J]. 高压物理学报, 1997, 11(2): 124–129. doi: 10.11858/gywlxb.1997.02.008 SUN Y, CHEN X M, CHEN P S, et al. A kind of low temperature target system and its application in shock compression studying of liquid [J]. Chinese Journal of High Pressure Physics, 1997, 11(2): 124–129. doi: 10.11858/gywlxb.1997.02.008
[23] 陈延伟, 曹明磊, 李奇. 超临界二氧化碳相变做功发射技术研究 [J]. 兵器装备工程学报, 2024, 45(4): 224–228. doi: 10.11809/bqzbgcxb2024.04.029 CHEN Y W, CAO M L, LI Q. Research progress and prospect of supercritical carbon dioxide phase transition work technology [J]. Journal of Ordnance Equipment Engineering, 2024, 45(4): 224–228. doi: 10.11809/bqzbgcxb2024.04.029
[24] 徐敏潇, 尹光春. 二氧化碳致裂器激发药剂爆炸性分类的研究 [J]. 爆破器材, 2021, 50(3): 19–22, 28. doi: 10.3969/j.issn.1001-8352.2021.03.004 XU M X, YIN G C. Classification of explosive properties of simulants used in carbon dioxide splitter [J]. Explosive Materials, 2021, 50(3): 19–22, 28. doi: 10.3969/j.issn.1001-8352.2021.03.004
[25] 杨海斌, 汪旭光, 王尹军, 等. 液态CO2相变爆炸激发药剂的爆炸性与安全性 [J]. 工程爆破, 2022, 28(3): 97–102. doi: 10.19931/j.EB.20210335 YANG H B, WANG X G, WANG Y J, et al. Explosiveness and safety of liquid CO2 phase change explosive excitant [J]. Engineering Blasting, 2022, 28(3): 97–102. doi: 10.19931/j.EB.20210335
[26] 杨海斌, 汪旭光, 王尹军, 等. 液态CO2相变爆炸激发药剂安全性的试验研究 [J]. 火炸药学报, 2022, 45(4): 590–596. doi: 10.14077/j.issn.1007-7812.202201011 YANG H B, WANG X G, WANG Y J, et al. Experimental study on the safety of liquid CO2 phase change explosive excitant [J]. Chinese Journal of Explosives & Propellants, 2022, 45(4): 590–596. doi: 10.14077/j.issn.1007-7812.202201011
[27] 黄鲁湘, 夏军, 徐添福. 激发管药剂抗爆性能试验研究 [J]. 采矿技术, 2020, 20(6): 90–92. doi: 10.3969/j.issn.1671-2900.2020.06.024 HUANG L X, XIA J, XU T F. Experimental study on the anti-explosive properties of the excitation tube agent [J]. Mining Technology, 2020, 20(6): 90–92. doi: 10.3969/j.issn.1671-2900.2020.06.024
[28] 杜明燃, 胡赏赏, 王尹军, 等. 镁粉和铝粉对CO2相变激发药剂性能的影响 [J]. 工程爆破, 2024, 30(2): 88–97. doi: 10.19931/j.EB.20220385 DU M R, HU S S, WANG Y J, et al. Effect of magnesium and aluminum powders on the performance of CO2 phase change excitation agent [J]. Engineering Blasting, 2024, 30(2): 88–97. doi: 10.19931/j.EB.20220385
[29] LI X H, PEI H B, ZHANG X, et al. Cover picture: effect of aluminum particle size on the performance of aluminized explosives (Prop. , Explos. , Pyrotech. 5/2020) [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(5): 687.
[30] 冀威, 徐宇轩. 零氧平衡RDX/NC/AP/Al复合炸药的制备及其性能表征 [J]. 含能材料, 2022, 30(6): 528–534. doi: 10.11943/CJEM2021315 JI W, XU Y X. Preparation and characterization of RDX/NC/AP/Al composite energetic microspheres based on zero-oxygen balance [J]. Chinese Journal of Energetic Materials, 2022, 30(6): 528–534. doi: 10.11943/CJEM2021315
[31] 吴翠香. 炸药爆炸产生的有毒气体对人体危害及对策 [J]. 煤矿安全, 2003, 34(6): 37–39. doi: 10.3969/j.issn.1003-496X.2003.06.015 WU C X. Hazard of harmful gases caused by explosives basting on human body and countermeasures [J]. Safety in Coal Mines, 2003, 34(6): 37–39. doi: 10.3969/j.issn.1003-496X.2003.06.015
[32] 冯国富, 王晗, 汪长栓, 等. 桥塞投放工具用低残渣低燃速复合推进剂 [J]. 火炸药学报, 2008, 31(2): 71–74. doi: 10.3969/j.issn.1007-7812.2008.02.019 FENG G F, WANG H, WANG C S, et al. Composite propellant with low residue percentage and low burning rate used in the bridge-plug equipment [J]. Chinese Journal of Explosives & Propellants, 2008, 31(2): 71–74. doi: 10.3969/j.issn.1007-7812.2008.02.019
[33] 王彩玲, 赵省向, 贾铭, 等. 含AP非理想炸药爆轰产物分析与计算 [J]. 含能材料, 2014, 22(2): 235–239. doi: 10.3969/j.issn.1006-9941.2014.02.022 WANG C L, ZHAO S X, JIA M, et al. Calculation of detonation products for non-ideal explosive with AP [J]. Chinese Journal of Energetic Materials, 2014, 22(2): 235–239. doi: 10.3969/j.issn.1006-9941.2014.02.022
[34] 李世伟, 王正宏, 吴成成, 等. 铝粉含量对RDX基含铝炸药爆热性能的影响 [J]. 爆破器材, 2022, 51(4): 29–32. doi: 10.3969/j.issn.1001-8352.2022.04.005 LI S W, WANG Z H, WU C C, et al. Effect of aluminum content on detonation heat of RDX-based aluminized explosives [J]. Explosive Materials, 2022, 51(4): 29–32. doi: 10.3969/j.issn.1001-8352.2022.04.005
[35] 王冬梅, 耿志远. 草酸热分解机理的DFT研究 [J]. 化学与生物工程, 2011, 28(3): 39–43. doi: 10.3969/j.issn.1672-5425.2011.03.011 WANG D M, GENG Z Y. DFT study on thermal decomposition mechanism of oxalic acid [J]. Chemistry & Bioengineering, 2011, 28(3): 39–43. doi: 10.3969/j.issn.1672-5425.2011.03.011
[36] CUI H W, JIU J T, NAGAO S, et al. Using Ozawa method to study the curing kinetics of electrically conductive adhesives [J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(3): 1365–1373. doi: 10.1007/s10973-014-3902-4
[37] 孙亚伦, 刘璐, 任慧, 等. 锆粉对高氯酸钾热分解反应的影响 [J]. 含能材料, 2017, 25(5): 396–402. doi: 10.11943/j.issn.1006-9941.2017.05.008 SUN Y L, LIU L, REN H, et al. Effect of zirconium powder on thermal decomposition of KClO4 [J]. Chinese Journal of Energetic Materials, 2017, 25(5): 396–402. doi: 10.11943/j.issn.1006-9941.2017.05.008
[38] 王国强, 李勇宏, 胥会祥, 等. 高氯酸钾复合推进剂的耐温性 [J]. 火炸药学报, 2015, 38(5): 83–86. doi: 10.14077/j.issn.1007-7812.2015.05.017 WANG G Q, LI Y H, XU H X, et al. Temperature resistance of potassium perchlorate composite propellant [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 83–86. doi: 10.14077/j.issn.1007-7812.2015.05.017
[39] 朱铭铮. 基于DMA技术的环氧树脂耐热性能研究 [D]. 武汉: 武汉理工大学, 2005. ZHU M Z. Study on thermal properties of epoxy resins by DMA [D]. Wuhan: Wuhan University of Technology, 2005.
[40] 郑剑, 陈人杰, 李国平, 等. RDX/AP分子间炸药热性能的研究 [J]. 北京理工大学学报, 2011, 31(4): 482–485. doi: 10.15918/j.tbit1001-0645.2011.04.007 ZHENG J, CHEN R J, LI G P, et al. Study on thermal decomposition of RDX/AP intermolecular explosive [J]. Transactions of Beijing Institute of Technology, 2011, 31(4): 482–485. doi: 10.15918/j.tbit1001-0645.2011.04.007