[1] |
徐希翔, 曲铭浩, 杨苗, 等. 隆基绿能硅异质结太阳能电池研发与产业化发展[C]. 上海市太阳能学会, 2023: 27 (in Chinese)
Xu X X, Qu M H, Yang M, et al. Longji green energy silicon heterojunction solar cell research and development and industrialization progress[C]. ShanghaiSolar Energy Society, 2023: 27
|
[2] |
SchüttaufA J, Werf D VM H K, KielenM I, et al. High quality crystalline silicon surface passivation by combined intrinsic and n-type hydrogenated amorphous silicon[J]. Applied Physics Letters, 2011, 99(20): 203503 doi: 10.1063/1.3662404
|
[3] |
Meng H, Wu X, Ma F, et al. Structural optimizationand growth of intrinsic hydrogenated amorphous silicon films by HWCVD[J]. Solar Energy Materials and Solar Cells, 2024, 271: 112835 doi: 10.1016/j.solmat.2024.112835
|
[4] |
赵晓霞, 田宏波, 王伟, 等. a-Si: H(p)/c-Si(n)异质结太阳电池的模拟优化[J]. 可再生能源, 2022, 40(3): 313−317 (in Chinese) doi: 10.3969/j.issn.1671-5292.2022.03.005
Zhao X X, Tian H B, Wang W, et al. Simulation and optimization of a-Si: H(p)/c-Si(n) heterojunction solar cells[J]. Renewable Energy Resources, 2022, 40(3): 313−317 doi: 10.3969/j.issn.1671-5292.2022.03.005
|
[5] |
沈文忠, 李正平. 硅基异质结太阳电池物理与器件[M]. 北京: 科学出版社, 2014, 126−129 (in Chinese)
Shen W Z, Li Z P. Physics and devices of silicon heterojunction solar cells[M]. Beijing: Science Press, 2014, 126−129
|
[6] |
Qi Wang. Hot-wire CVD amorphous Si materials for solar cell application[J]. Thin Solid Films, 2009, 517: 3570−3574 doi: 10.1016/j.tsf.2009.01.072
|
[7] |
Page M R, Wang Q, Iwaniczko E, et al. Efficient heterojunction solar cells on p-type crystal silicon wafers[J]. Applied Physics Letters, 2010, 96: 013507 doi: 10.1063/1.3284650
|
[8] |
田罡煜, 王涛, 黄海宾, 等. 热丝CVD法沉积超薄a-Si: H钝化膜[J]. 半导体技术, 2017, 42(5): 376−381 (in Chinese)
Tian G Y, Wang T, Huang H B, et al. Deposition ofuntra-thin a-Si: H passivation film by HWCVD method[J]. Semiconductor Technology, 2017, 42(5): 376−381
|
[9] |
Balderas GE I, Ruiz MC, Andres RE, et al. Effect of hydrogen flow rate on properties of silicon oxycarbide thin films via hot wire chemical vapor deposition[J]. International Journal of Applied Ceramic Technology, 2024, 21(5): 3319−3334 doi: 10.1111/ijac.14796
|
[10] |
Shengurov V G, Buzynin N Y, Chalkov Y V, et al. Polycrystalline GeSn films grown by hot wire chemical vapor deposition on SiO2/Si(001) substrates[J]. physica status solidi(RRL)-Rapid Research Letters, 2024, 18(5): 2300484 doi: 10.1002/pssr.202300484
|
[11] |
Sandra R, Frank M, R. B W, et al. Graphene film growth on silicon carbide by hot filament chemical vapor deposition[J]. Nanomaterials, 2022, 12(17): 3033−3033 doi: 10.3390/nano12173033
|
[12] |
Barbosa C D, Nova V F H, Baldan R M, et al. Numerical simulation of HFCVD process used for diamond growth[J]. Brazilian Journal of Physics, 2015, 36(2a): 313−316
|
[13] |
Kwok M F, Du X, Sun Z, et al. Fabrication of diamond film under low methane concentration by hot filament chemical vapor deposition with magnetic field assistance[J]. Surface & Coatings Technology, 2024, 483: 130802
|
[14] |
Zhang T, Zhang J G, Shen B, et al. Simulation of temperature and gas density field distribution in diamond films growth on silicon wafer by hot filament CVD[J]. Journal of Crystal Growth, 2012, 343(1): 55−61 doi: 10.1016/j.jcrysgro.2012.01.005
|
[15] |
潜艺筝, 张韬, 汪舒, 等. 基于刀具底部散热方式的HFCVD法沉积金刚石涂层刀具温度场的仿真优化[J]. 金刚石与磨料磨具工程, 2020, 40(3): 40−45 (in Chinese)
Qian Y Z, Zhang T, Wang S, et al. Simulation and optimization of temperature field of diamond coated tools deposited by HFCVD method based on heat dissipation at tool bottom[J]. Diamond & Abrasives Engineering, 2020, 40(3): 40−45
|
[16] |
邓福铭, 王双, 郭振海, 等. 基于ANSYS模拟的基体表面温度场对纳米金刚石膜沉积的影响[J]. 金刚石与磨料磨具工程, 2020, 40(3): 33−39 (in Chinese)
Deng F M, Wang S, Guo Z H, et al. Effect of matrix surface temperature field on deposition of nano-diamond films based on ANSYS simulation[J]. Diamond & Abrasives Engineering, 2020, 40(3): 33−39
|
[17] |
Gavali R S, Pawar M P D. Computational analysis of a four-flap valveless micropump (FFVM) for low reynolds number applications in microfluidic systems[J]. Physica Scripta, 2024, 99(7): 075011 doi: 10.1088/1402-4896/ad5063
|
[18] |
Carmine N D, Simone M, Marcello R D, et al. Modeling of low mach number unsteady turbulent pipe flows[J]. Meccanica, 2024, 59(5): 717−728 doi: 10.1007/s11012-024-01819-w
|
[19] |
韩占忠, 王敬, 兰小平, 等. FLUENT流体工程仿真计算实例与应用[M]. 北京: 北京理工大学出版社, 2008 (in Chinese)
Han Z Z, Wang J, Lan X P, et al. Examples and applications of FLUENT fluid engineering simulation[M]. Beijing: Beijing Institute of Technology Press, 2008
|
[20] |
王福军. 计算流体动力学分析—CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004 (in Chinese)
Wang F J. Computational fluid dynamics analysis- principle and application of CFD software[M]. Beijing: Tsinghua university Press, 2004
|
[21] |
宁武涛, 何玉平, 黄海宾, 等. 热丝电流对HWCVD制备a-Si: H膜结构及钝化效果的影响[J]. 半导体技术, 2015, 40(8): 606−610 (in Chinese)
Ning W T, He Y P, Huang H B, et al. Influence of filament current on the structure and passivation effect of a-Si: H film prepared by HWCVD[J]. Semiconductor Technology, 2015, 40(8): 606−610
|