[1] |
Liu P S, Chen G F. Porous Materials: Processing and applications [M]. Boston: Elsevier Science, 2014
|
[2] |
刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2: 实验验证[J]. 材料工程, 2019, 47(7): 35−49 (in Chinese) doi: 10.11868/j.issn.1001-4381.2018.001411
Liu P S, Xia F J, Cheng W. Study on property model for porous materials 2: experimental verification[J]. Journal of Materials Engineering, 2019, 47(7): 35−49 doi: 10.11868/j.issn.1001-4381.2018.001411
|
[3] |
杨碧莲, 李星吾, 阮莹, 等. 多孔Cu/Ni复合材料的电沉积法制备及其性能[J]. 稀有金属材料与工程, 2019, 48(10): 3215−3220 (in Chinese)
Yang B L, Li X W, Ruan Y, et al. Electrodeposition processing of porous Cu/Ni composites and their performance[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3215−3220
|
[4] |
陈金妹, 谈萍, 王建永. 气体吸附法表征多孔材料的比表面积及孔结构[J]. 粉末冶金工业, 2011, 21(2): 45−49 (in Chinese) doi: 10.3969/j.issn.1006-6543.2011.02.010
Chen J M, Tan P, Wang J Y. Characterization of pore structure and specific surface area based on gas adsorption applied for porous materials[J]. Powder Metallurgy Industry, 2011, 21(2): 45−49 doi: 10.3969/j.issn.1006-6543.2011.02.010
|
[5] |
韦良, 赵燕熹, 向勇, 等. 大孔径高比表面积介孔硅泡沫的制备和表征[J]. 武汉理工大学学报, 2013, 35(6): 34−38 (in Chinese) doi: 10.3963/j.issn.1671-4431.2013.06.007
Wei L, Zhao Y X, Xiang Y, et al. Preparation and characterization of mesocellar silica foam with large pore size and high surface area[J]. Journal of Wuhan University of Technology, 2013, 35(6): 34−38 doi: 10.3963/j.issn.1671-4431.2013.06.007
|
[6] |
Shen H M, Liu C, Yang L H, et al. Pore-scale numerical investigation on comprehensive heat transfer performance of homogeneous and graded metal foam heat sinks[J]. Thermal Science, 2024, 28(2B): 1529−1544
|
[7] |
Baloyo J M. Open-cell porous metals for thermal management applications: fluid flow and heat transfer[J]. Materials Science and Technology, 2017, 33(3): 265−276 doi: 10.1080/02670836.2016.1180795
|
[8] |
Zhu F, Hu X S, Wang X C, et al. Experimental and numerical investigation of the melting process of aluminum foam/paraffin composite with low porosity[J]. Numerical Heat Transfer, Part A: applications, 2020, 77(12): 998−1013 doi: 10.1080/10407782.2020.1747289
|
[9] |
Jiang C P, Chen F L, Yan P, et al. Prediction of effective stagnant thermal conductivities of porous materials at high temperature by the generalized self-consistent method[J]. Philosophical Magazine, 2012, 92(16): 2032−2047 doi: 10.1080/14786435.2012.661888
|
[10] |
Shen H M, Ye Q, Meng G X. The simplified analytical models for evaluating the heat transfer performance of high-porosity metal foams[J]. Int J Thermophys, 2018, 39: 87−101 doi: 10.1007/s10765-018-2405-0
|
[11] |
刘培生. 多孔金属比表面积的计算方法[J]. 材料研究学报, 2009, 23(4): 415−420 (in Chinese) doi: 10.3321/j.issn:1005-3093.2009.04.015
Liu P S. Calculation method for the specific surface area of porous metals[J]. Chinese Journal of Materials Research, 2009, 23(4): 415−420 doi: 10.3321/j.issn:1005-3093.2009.04.015
|
[12] |
Liu P S. A new method for calculating the specific surface area of porous metal foams[J]. Philosophical Magazine Letters, 2010, 90(6): 447−453 doi: 10.1080/09500831003745571
|
[13] |
Chen J, Zhang X, Li C, et al. Calculation method of specific surface area of foam metal based on an ideal tetradecahedron model for lithium ion battery[J]. International Journal of Photoenergy, 2020, 1(1): Article ID 2478579.
|
[14] |
马立群, 何德坪. 新型泡沫铝的制备及其孔结构的控制[J]. 材料研究学报, 1994, 8(1): 10−17 (in Chinese)
Ma L Q, He D P. Fabrication and pore structure control of new type aluminium foams[J]. Chinese Journal of Materials Research, 1994, 8(1): 10−17
|
[15] |
王启立, 胡亚非, 何敏, 等. 石墨多孔介质孔隙度与比表面积的分形描述[J]. 煤炭学报, 2010, 35(10): 1725−1729 (in Chinese)
Wang Q L, Hu Y F, He M, et al. Fractal description of porosity and specific surface area for porous media of graphite[J]. Journal of China Coal Society, 2010, 35(10): 1725−1729
|