[1] Tashtoush B M, Al-Nimr M A, Khasawneh M A, et al. A comprehensive review of ejector design, performance, and applications[J]. Applied Energy,2019,240:138−172 doi: 10.1016/j.apenergy.2019.01.185
[2] Eames W I. A new prescription for the design of supersonic jet-pumps: the constant rate of momentum change method[J]. Applied Thermal Engineering,2002,22(2):121−131 doi: 10.1016/S1359-4311(01)00079-5
[3] Kitrattana B, Aphornratana S, Thongtip T. Investigation on improvement potential of steam ejector performance in refrigeration cycle via constant rate of momentum change design method[J]. Applied Thermal Engineering,2023,231:120953 doi: 10.1016/j.applthermaleng.2023.120953
[4] He S, Li Y, Wang R Z. Progress of mathematical modeling on ejectors[J]. Renewable and Sustainable Energy Reviews,2009,13(8):1760−1780 doi: 10.1016/j.rser.2008.09.032
[5] Sokolo E, Zinger H M. Ejector[M]. Beijing: science press, 1977: 280
[6] Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design byanalysis and experiment[J]. Journal of Applied Mechanics,1950,17:299−309 doi: 10.1115/1.4010131
[7] Yapıcı R, Ersoy H. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model[J]. Energy Conversion and Management,2005,46(18-19):3117−3135 doi: 10.1016/j.enconman.2005.01.010
[8] Petrenko V O, Huang B J, Shestopalov K O, et al. An advanced solar-assisted cascade ejector cooling/CO2 sub-critical mechanical compression refrigeration system[C]. The proceedings of the ISES Solar World Congress, 2011
[9] Shestopalov K O, Huang B J, Petrenko V O, et al. Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 1. Theoretical analysis[J]. International Journal of Refrigeration,2015,55:201−211 doi: 10.1016/j.ijrefrig.2015.01.016
[10] Shestopalov K O, Huang B J, Petrenko V O, et al. Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 2. Theoretical and experimental results[J]. International Journal of Refrigeration,2015,55:212−223 doi: 10.1016/j.ijrefrig.2015.02.004
[11] Del Valle J G, Jabardo J M S, Ruiz F C, et al. An experimental investigation of a R-134a ejector refrigeration system[J]. International Journal of Refrigeration,2014,46:105−113 doi: 10.1016/j.ijrefrig.2014.05.028
[12] 陈洪杰, 卢苇, 曹聪, 等. 圆柱形及圆锥形混合室气体喷射器的适用参数区探讨[J]. 化工学报,2013,64(6):2043−2049 (in Chinese) Chen H J, Lu W, Cao C, et al. Discussion on the applicable parameters of gas ejectors in cylindrical and Conical mixing chamber[J]. CIESC Journal,2013,64(6):2043−2049
[13] Tashtoush B, Alshare A, Al-Rifai S. Performance study of ejector cooling cycle at critical mode under superheated primary flow[J]. Energy Conversion and Management,2015,94:300−310 doi: 10.1016/j.enconman.2015.01.039
[14] Sierra-Pallares J, Valle J G D, Carrascal P G, et al. A computational study about the types of entropy generation in three different R134a ejector mixing chambers[J]. International Journal of Refrigeration,2016,63:199−213 doi: 10.1016/j.ijrefrig.2015.11.007
[15] 季建刚, 倪海, 黎立新, 等. 蒸汽喷射压缩器的变工况特性模拟与分析[J]. 化工学报,2008,59(3):557−561 (in Chinese) doi: 10.3321/j.issn:0438-1157.2008.03.004 Ji J G, Ni H, Li L X, et al. Simulation and analysis of steam jet compressor under variable operating conditions[J]. CIESC Journal,2008,59(3):557−561 doi: 10.3321/j.issn:0438-1157.2008.03.004
[16] 谭丽萍, 陈洪杰, 葛敬, 等. 喷嘴距及混合室喉部长度对喷射器性能综合影响研究[J]. 真空科学与技术学报,2024,44(2):156−166 (in Chinese) Tan L P, Chen H J, Ge J, et al. Numerical analysis of flow parameters and performance of steam ejector[J]. Chinese Journal Vacuum Science and Technology,2024,44(2):156−166
[17] 邵天, 杜亚威, 刘燕, 等. 蒸汽喷射器的三维数值模拟研究[J]. 真空科学与技术学报,2014,34(3):305−311 (in Chinese) Shao T, Du Y W, Liu Y, et al. Three-dimensional numerical simulation of steam ejector[J]. Chinese Journal Vacuum Science and Technology,2014,34(3):305−311
[18] Nguyen V V, Varga S, Soares J, et al. Applying a variable geometry ejector in a solar ejector refrigeration system[J]. International Journal of Refrigeration,2020,113:187−195 doi: 10.1016/j.ijrefrig.2020.01.018
[19] Wang L, Liu J, Zou T, et al. Auto-tuning ejector for refrigeration system[J]. Energy,2018,161(15):536−543
[20] Ge J, Chen H J, Jin Y, et al. Conical-cylindrical mixer ejector design model for predicting optimal nozzle exit position[J]. Energy,2023,283:129190 doi: 10.1016/j.energy.2023.129190
[21] Shahzamanian B, Varga S, Soares J, et al. Performance evaluation of a variable geometry ejector applied in a multi-effect thermal vapor compression desalination system[J]. Applied Thermal Engineering,2021,195:117177 doi: 10.1016/j.applthermaleng.2021.117177
[22] Zhang J, Zhai X, Li S. Numerical studies on the performance of ammonia ejectors used in ocean thermal energy conversion system[J]. Renewable Energy,2020,161:766−776 doi: 10.1016/j.renene.2020.07.025
[23] Ge J, Chen H J, Li J, et al. Experimental comparison of critical performance for variable geometry ejectors with different mixer structures[J]. Chemical Engineering Journal,2023,478:147487 doi: 10.1016/j.cej.2023.147487
[24] Chen H J, Zhu J H, Ge J, et al. A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position[J]. Energy,2020,208:118302 doi: 10.1016/j.energy.2020.118302
[25] Besagni G, Cristiani N, Croci L, et al. Computational fluid-dynamics modelling of supersonic ejectors: screening of modelling approaches, comprehensive validation and assessment of ejector component efficiencies[J]. Applied Thermal Engineering,2020,186:116431
[26] 秦汉时, 方凯跃, 高洪辉, 等. 基于正交试验的蒸汽喷射器喷嘴结构优化[J]. 真空科学与技术学报,2024,7(44):612−618 (in Chinese) Qin H S, Fang K Y, Gao H H, et al. Optimization of steam ejector nozzle structure based on orthogonal test[J]. Chinese Journal Vacuum Science and Technology,2024,7(44):612−618
[27] ANSYS Inc. Ansys-fluent 18.0 user's guide[M]. Canonsburg, PA: ANSYS Inc., 2018
[28] Herwig H, Kock F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems[J]. Heat and Mass Transfer,2007,43(3):207−215
[29] Sciacovelli A, Verda V, Sciubba E. Entropy generation analysis as a design tool—A review[J]. Renewable and Sustainable Energy Reviews,2015,43:1167−1181 doi: 10.1016/j.rser.2014.11.104
[30] Kock F, Herwig H. Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions[J]. International Journal of Heat and Mass Transfer,2004,47:2205−2215 doi: 10.1016/j.ijheatmasstransfer.2003.11.025
[31] 张文辉, 李奇. 天然气引射器内部熵产分析[J]. 过程工程学报,2023,23(6):870−879 (in Chinese) Zhang W H, Li Q. Analysis of entropy generation in natural gas ejector[J]. The Chinese Journal of Process Engineering,2023,23(6):870−879
[32] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8):1598−1605 doi: 10.2514/3.12149
[33] Lamberts O, Chatelain P, Bartosiewicz Y. Numerical and experimental evidence of the Fabri-choking in a supersonic ejector[J]. International Journal of Heat and Fluid Flow,2018,69:194−209 doi: 10.1016/j.ijheatfluidflow.2018.01.002
[34] Bumrungthaichaichan E, Ruangtrakoon N, Thongtip T. Performance investigation for CRMC and CPM ejectors applied in refrigeration under equivalent ejector geometry by CFD simulation[J]. Energy Reports,2022,8:12598−12617 doi: 10.1016/j.egyr.2022.09.042
[35] Ruangtrakoon N, Thongtip T, Aphornratana S, et al. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle[J]. International Journal of Thermal Sciences,2013,63:133−145 doi: 10.1016/j.ijthermalsci.2012.07.009
[36] Bumrungthaichaichan E. How can the appropriate near-wall grid size for gas cyclone CFD simulation be estimated[J]. Powder Technology,2022,396:327−344 doi: 10.1016/j.powtec.2021.10.031
[37] Tang Y Z, Liu Z L, Li Y X, et al. Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector[J]. Energy,2021,215:119128 doi: 10.1016/j.energy.2020.119128
[38] Kundu P K, Cohen I M, David D R. Fluid mechanics (sixth edition)[M]. San Diego: academic press, 2015
[39] Poirier M. Influence of operating conditions on the optimal nozzle exit position for vapor ejector[J]. Applied Thermal Engineering,2022,210:118377 doi: 10.1016/j.applthermaleng.2022.118377
[40] Wang K, Wang L, Jia L, et al. Optimization design of steam ejector primary nozzle for MED-TVC desalination system[J]. Desalination,2019,471:114070 doi: 10.1016/j.desal.2019.07.010
[41] Thongtip T, Aphornratana S. Development and performance of a heat driven R141b ejector air conditioner: Application in hot climate country[J]. Energy,2018,160:556−572 doi: 10.1016/j.energy.2018.07.043
[42] Ariafar K, Buttsworth D, Al-Doori G, et al. Effect of mixing on the performance of wet steam ejectors[J]. Energy,2015,93:2030−2041 doi: 10.1016/j.energy.2015.10.082
[43] Ariafar K, Buttsworth D, Al-Doori G, et al. Mixing layer effects on the entrainment ratio in steam ejectors through ideal gas computational simulations[J]. Energy,2016,95:380−392 doi: 10.1016/j.energy.2015.12.027
[44] Chen H, Ge J, Xu Z. A study on the evolution laws of entrainment performances using different mixer structures of ejectors[J]. Entropy,2024,26:891 doi: 10.3390/e26110891