[1] WANG Y G, LIU F S, LIU Q J, et al. Recover of C3N4 nanoparticles under high-pressure by shock wave loading [J]. Ceramics International, 2018, 44(16): 19290–19294. doi: 10.1016/j.ceramint.2018.07.155
[2] LANIEL D, TRYBEL F, ZHOU W J, et al. High-pressure synthesis of oP28-C3N4 recoverable to ambient conditions [J]. Advanced Functional Materials, 2025, 35(11): 2416892. doi: 10.1002/ADFM.202416892
[3] SONG X L, CHEN L, GAO L J, et al. Engineering g-C3N4 based materials for advanced photocatalysis: recent advances [J]. Green Energy & Environment, 2024, 9(2): 166–197. doi: 10.1016/j.gee.2022.12.005
[4] MUHMOOD T, AHMAD I, HAIDER Z, et al. Graphene-like graphitic carbon nitride (g-C3N4) as a semiconductor photocatalyst: properties, classification, and defects engineering approaches [J]. Materials Today Sustainability, 2024, 25: 100633. doi: 10.1016/j.mtsust.2023.100633
[5] YU X N, NG S F, PUTRI L K, et al. Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis [J]. Small, 2021, 17(48): 2006851. doi: 10.1002/smll.202006851
[6] KLAPÖTKE T M. TKX-50: a highly promising secondary explosive [M]//TRACHE D, BENALIOUCHE F, MEKKI A. Materials Research and Applications: Select Papers from JCH8–2019. Singapore: Springer, 2021: 1–91.
[7] WANG X H, HAO G Z, XIAO L, et al. Review on the thermal decomposition of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) [J]. Thermochimica Acta, 2023, 719: 179393. doi: 10.1016/J.TCA.2022.179393
[8] ZHAO C D, CHI Y, PENG Q, et al. A study on the comprehension of differences in specific kinetic energy of TKX-50 and HMX from the perspective of gas products [J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6600–6605. doi: 10.1039/C8CP07487A
[9] REN X, HE R N, WANG X H, et al. A comprehensive experimental and theoretical study of thermal response mechanisms of TKX-50 and HMX [J]. Fuel, 2024, 375: 132623. doi: 10.1016/j.fuel.2024.132623
[10] HAN Y H, LUO J F, GAO C X, et al. Phase transition of graphitic-C3N4 under high pressure by in situ resistance measurement in a diamond anvil cell [J]. Chinese Physics Letters, 2005, 22(6): 1347–1349. doi: 10.1088/0256-307X/22/6/014
[11] 李雪飞, 张剑, 刘伟, 等. 氮化碳的高压同步辐射研究 [J]. 高压物理学报, 2009, 23(1): 71–74. doi: 10.11858/gywlxb.2009.01.012 LI X F, ZHANG J, LIU W, et al. Synchrotron radiation X-ray diffraction of carbon nitride under high pressure [J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 71–74. doi: 10.11858/gywlxb.2009.01.012
[12] 李雪飞, 马艳梅, 沈龙海, 等. 石墨相C3N4压致结构相变研究 [J]. 高压物理学报, 2010, 24(1): 67–70. doi: 10.11858/gywlxb.2010.01.012 LI X F, MA Y M, SHEN L H, et al. Study on the pressure-induced phase transition of g-C3N4 [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 67–70. doi: 10.11858/gywlxb.2010.01.012
[13] GAO X, YIN H, CHEN P W, et al. Shock-induced phase transition of g-C3N4 to a new C3N4 phase [J]. Journal of Applied Physics, 2019, 126(15): 155901. doi: 10.1063/1.5111710
[14] 马海云, 刘福生, 李永宏, 等. 强冲击压缩条件下g-C3N4β-C3N4直接转化 [J]. 高压物理学报, 2012, 26(3): 319–324. doi: 10.11858/gywlxb.2012.03.012 MA H Y, LIU F S, LI Y H, et al. Strong shock-compression of g-C3N4 precursor for direct synthesis of β-C3N4 [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 319–324. doi: 10.11858/gywlxb.2012.03.012
[15] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides [J]. Science, 1996, 271(5245): 53–55. doi: 10.1126/science.271.5245.53
[16] LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science, 1989, 245(4920): 841–842. doi: 10.1126/science.245.4920.841
[17] KOJIMA Y, OHFUJI H. Structure and stability of carbon nitride under high pressure and high temperature up to 125 GPa and 3000 K [J]. Diamond and Related Materials, 2013, 39: 1–7. doi: 10.1016/j.diamond.2013.07.006
[18] MING L C, ZININ P, MENG Y, et al. A cubic phase of C3N4 synthesized in the diamond-anvil cell [J]. Journal of Applied Physics, 2006, 99(3): 033520. doi: 10.1063/1.2168567
[19] FANG L M, OHFUJI H, SHINMEI T, et al. Experimental study on the stability of graphitic C3N4 under high pressure and high temperature [J]. Diamond and Related Materials, 2011, 20(5/6): 819–825. doi: 10.1016/j.diamond.2011.03.034
[20] 邹广田, 李雪飞, 杨大鹏, 等. 石墨相C3N4的高温高压研究 [J]. 原子与分子物理学报, 2009, 26(4): 705–707. doi: 10.3969/j.issn.1000-0364.2009.04.024 ZOU G T, LI X F, YANG D P, et al. Study on the pressure-induced phase transition of g-C3N4 [J]. Journal of Atomic and Molecular Physics, 2009, 26(4): 705–707. doi: 10.3969/j.issn.1000-0364.2009.04.024
[21] LANIEL D, TRYBEL F, ASLANDUKOV A, et al. Synthesis of ultra-incompressible and recoverable carbon nitrides featuring CN4 tetrahedra [J]. Advanced Materials, 2024, 36(3): 2308030. doi: 10.1002/adma.202308030
[22] MANYALI G S, WARMBIER R, QUANDT A, et al. Ab initio study of elastic properties of super hard and graphitic structures of C3N4 [J]. Computational Materials Science, 2013, 69: 299–303. doi: 10.1016/j.commatsci.2012.11.039
[23] LANZILOTTO V, SILVA J L, ZHANG T, et al. Spectroscopic fingerprints of intermolecular H-bonding interactions in carbon nitride model compounds [J]. Chemistry–A European Journal, 2018, 24(53): 14198–14206. doi: 10.1002/chem.201802435
[24] UGOLOTTI A, DI VALENTIN C. Ab-initio spectroscopic characterization of melem-based graphitic carbon nitride polymorphs [J]. Nanomaterials, 2021, 11(7): 1863. doi: 10.3390/nano11071863
[25] 阮林伟. g-C3N4光催化材料的第一性原理研究 [D]. 合肥: 安徽大学, 2015: 42–56. RUAN L W. First-principles study of g-C3N4 photocatalytic materials [D]. Hefei: Anhui University, 2015: 42–56.
[26] ZHAO Y R, ZHANG H R, ZHANG G T, et al. First-principles investigation on elastic and thermodynamic properties of Pnnm-CN under high pressure [J]. AIP Advances, 2016, 6(12): 125040. doi: 10.1063/1.4972775
[27] RUAN L W, ZHU Y J, QIU L G, et al. First principles calculations of the pressure affection to g-C3N4 [J]. Computational Materials Science, 2014, 91: 258–265. doi: 10.1016/j.commatsci.2014.04.058
[28] PRIBYLOV A A, POSTNIKOV E B. Thermodynamic curvature and the thermal expansion isolines [J]. Journal of Molecular Liquids, 2021, 335: 115994. doi: 10.1016/j.molliq.2021.115994
[29] RIBEIRO M, HENRIQUES T, CASTRO L, et al. The entropy universe [J]. Entropy, 2021, 23(2): 222.
[30] BLANCO M A, FRANCISCO E, LUAÑA V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57–72. doi: 10.1016/j.comphy.2003.12.001
[31] LUO Y F, LI M K, YUAN H M, et al. Predicting lattice thermal conductivity via machine learning: a mini review [J]. NPJ Computational Materials, 2023, 9(1): 4. doi: 10.1038/s41524-023-00964-2
[32] XIAN Y T, XIANG S K, LIU L, et al. Accurate equation of state of rhenium as pressure scale up to 130 GPa and 3200 K [J]. AIP Advances, 2022, 12(5): 055313. doi: 10.1063/5.0089292
[33] LUO Y, XIANG S K, LI J, et al. Equation of state of MgO up to 345 GPa and 8500 K [J]. Physical Review B, 2023, 107(13): 134116. doi: 10.1103/PhysRevB.107.134116
[34] KRUKOWSKI S, STRĄK P. Equation of state of nitrogen (N2) at high pressures and high temperatures: molecular dynamics simulation [J]. The Journal of Chemical Physics, 2006, 124(13): 134501. doi: 10.1063/1.2185096
[35] 杨金文, 施尚春, 李巧燕, 等. 高温高密度液氦冲击压缩特性理论研究 [J]. 爆炸与冲击, 2007, 27(6): 557–561. doi: 10.11883/1001-1455(2007)06-0557-05 YANG J W, SHI S C, LI Q Y, et al. Theoretical research on shock compression properties of liquid helium at high temperature and density [J]. Explosion and Shock Waves, 2007, 27(6): 557–561. doi: 10.11883/1001-1455(2007)06-0557-05
[36] 赵艳红. 基于统计物理和化学平衡的爆轰产物物态方程 [D]. 绵阳: 中国工程物理研究院, 2015: 21–46. ZHAO Y H. The equation of state of detonation products based on statistical physics and chemical equilibrium [D]. Mianyang: China Academy of Engineering Physics, 2015: 21–46.
[37] FRIED L E, HOWARD W M. Explicit Gibbs free energy equation of state applied to the carbon phase diagram [J]. Physical Review B, 2000, 61(13): 8734–8743. doi: 10.1103/PhysRevB.61.8734
[38] JAWORSKI Z, ZAKRZEWSKA B, PIANKO-OPRYCH P. On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: updating for nanotubes [J]. Reviews in Chemical Engineering, 2017, 33(3): 217–235. doi: 10.1515/revce-2016-0022
[39] 王中友, 李星翰, 甘云丹, 等. 爆热弹中产物组分演化的计算研究 [J]. 火炸药学报, 2022, 45(2): 229–242. doi: 10.14077/j.issn.1007-7812.202112008 WANG Z Y, LI X H, GAN Y D, et al. Study on thermodynamic evolution of detonation products in the detonation bomb test [J]. Chinese Journal of Explosives & Propellants, 2022, 45(2): 229–242. doi: 10.14077/j.issn.1007-7812.202112008
[40] LI X H, YI Z C, LIU Q J, et al. Research of detonation products of RDX/Al from the perspective of composition [J]. Defence Technology, 2023, 24: 31–45. doi: 10.1016/j.dt.2022.11.016
[41] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future [J]. Multimedia Tools and Applications, 2021, 80(5): 8091–8126. doi: 10.1007/s11042-020-10139-6
[42] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview [J]. Soft Computing, 2018, 22(2): 387–408. doi: 10.1007/s00500-016-2474-6
[43] CANG Y P, LIAN S B, YANG H M, et al. Predicting physical properties of tetragonal, monoclinic and orthorhombic M3N4 (M= C, Si, Sn) polymorphs via first-principles calculations [J]. Chinese Physics Letters, 2016, 33(6): 066301. doi: 10.1088/0256-307X/33/6/066301
[44] FISCHER N, FISCHER D, KLAPÖTKE T M, et al. Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate [J]. Journal of Materials Chemistry, 2012, 22(38): 20418–20422. doi: 10.1039/C2JM33646D
[45] SUCESKA M, TUMARA B S, DOBRILOVIC M, et al. Estimation of detonation front curvature radius by empirical equations [J]. Journal of Energetic Materials, 2024, 42(2): 169–186. doi: 10.1080/07370652.2022.2052207
[46] SAIF M, WANG W T, PEKALSKI A, et al. Chapman-Jouguet deflagrations and their transition to detonation [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2771–2779. doi: 10.1016/j.proci.2016.07.122
[47] 杨舒棋, 张旭, 彭文杨, 等. 钝感炸药冲击起爆反应过程的PDV技术 [J]. 高压物理学报, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856 YANG S Q, ZHANG X, PENG W Y, et al. PDV technology of shock initiation reaction process of insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
[48] GOTTFRIED J L, KLAPÖTKE T M, WITKOWSKI T G. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser-induced air shock from energetic materials technique [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353–359. doi: 10.1002/prep.201600257
[49] 刘佳辉, 范桂娟, 卢校军, 等. TKX-50基混合炸药的爆轰及安全性能 [J]. 含能材料, 2019, 27(11): 902–907. doi: 10.11943/CJEM2019052 LIU J H, FAN G J, LU X J, et al. Detonation and safety performance of TKX-50 based PBX [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 902–907. doi: 10.11943/CJEM2019052
[50] TAN K Y, HAN Y, LIU J H, et al. Detonation reaction zone and acceleration ability of a TKX-50 based polymer bonded explosive [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(1): e202100367. doi: 10.1002/PREP.202100367
[51] KESHAVARZ M, ABADI Y H, ESMAEILPOUR K, et al. Novel high-nitrogen content energetic compounds with high detonation and combustion performance for use in plastic bonded explosives (PBXs) and composite solid propellants [J]. Central European Journal of Energetic Materials, 2018, 15(2): 364–375. doi: 10.22211/cejem/78091