[1] |
Vorontsov V V, Kostin A N, Lovtsov A S, et al. Development of KM-60 based orbit control propulsion subsystem for geostationary satellite[J]. Procedia Engineering,2017,185:319−325 doi: 10.1016/j.proeng.2017.03.310
|
[2] |
Chen Y, Yan Z, Jia Z, et al. Modeling and simulation of xenon storage and supply system for electric propulsion system based on fundamental equation of state[J]. Applied Thermal Engineering,2024,249:123296 doi: 10.1016/j.applthermaleng.2024.123296
|
[3] |
Amano S, Fielden S D P, Leigh D A. A catalysis-driven artificial molecular pump[J]. Nature,2021,594(7864):529−534 doi: 10.1038/s41586-021-03575-3
|
[4] |
Kobayashi S, Otake H. The experimental research on the back-streaming of oil vapor of an oil diffusion pump[J]. Vacuum,1959,9(1):73−73
|
[5] |
Chu X X, Zhang M M, Zhang D X, et al. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas[C]. AIP Conference Proceedings. American Institute of Physics, 2014, 1573(1): 1638-1644
|
[6] |
柏树, 颜昌林, 杨建斌, 等. 一种大口径抽除氙气低温泵: CN201510419303.1[P]. 2015-11-11 (in Chinese)
Bai S, Yan C L, Yang J B, et al. Large-aperture xenon evacuation cryopump: CN201510419303.1[P]. 2015-11-11
|
[7] |
李培印, 林博颖, 吕剑锋, 等. 氙泵系统设计[J]. 真空,2018,55(4):5 (in Chinese)
Li P Y, Lin B Y, Lv J F, et al. Design of xenon pump[J]. Vacuum,2018,55(4):5
|
[8] |
武义锋, 曾环, 王君, 等. 大抽速氙气泵优化设计研究[J]. 低温与超导,2023,51(5):78−84 (in Chinese)
Wu Y F, Zeng H, Wang J, et al. Study on optimal design of xenon air pump with high pumping speed[J]. Cryogenics and Superconductivity,2023,51(5):78−84
|
[9] |
Garner C, Polk J, Brophy J, et al. Methods for cryopuming xenon[C]. 32nd Joint Propulsion Conference and Exhibit. 1996: 3206
|
[10] |
Ling G L, Wei L J, Cai G B. Pumping speed of cryopump for xenon[J]. Journal of Aerospace Power,2015,30(7):1731−1736
|
[11] |
Lausberg S. Vacuum challenges for ion thruster testing: advanced cryogenic solutions for xenon pumping[J]. Vakuum in Forschung und Praxis,2020,32(4):22−28 doi: 10.1002/vipr.202000741
|
[12] |
Neumann A, Brchnelova M. Modelling of cryopumps for space electric propulsion usage[J]. aerospace,2024,11(3):1638−1644
|
[13] |
Park J, Ko J, Kim H, et al. Development of a large capacity cryopump equipped with a two-stage GM cryocooler[J]. Applied Thermal Engineering,2022,217:119217 doi: 10.1016/j.applthermaleng.2022.119217
|
[14] |
达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2004: 416−420 (in Chinese)
DA D A. Vacuum design manual[M]. Beijing: National Defense Industry Press, 2004: 416−420
|
[15] |
Levenson, Leonard L. Condensation coefficients of argon, krypton, Xenon, and Carbon Dioxide measured with a quartz crystal microbalance[J]. Journal of Vacuum Science & Technology,1971,8(5):629−635
|
[16] |
全国真空技术标准化技术委员会. JB/T 11081-2011 真空技术 制冷机低温泵[S]. 北京: 机械工业出版社, 2011 (in Chinese)
Vacuum Technology. JB/T 11081-2011 Vacuum technology-Refrigerator cooled cryopumps[S]. Beijing: China Machine Press, 2011
|
[17] |
李朝. 块体椰壳活性炭的制备及其在低温冷凝板中的应用研究[D]. 合肥: 中国科学技术大学, 2024 (in Chinese)
Li Z. Studies on the preparation of coconut shell activated carbon monolith and its application in cryopanels[D]. Hefei: University of Science and Technology of China, 2024
|