[1] |
Seo Y, Go H, Lee J, et al. Analysis method to define photoresist resolution in EUV lithography[J]. International Conference on Extreme Ultraviolet Lithography 2023,2023,12750:127500B
|
[2] |
Sunahara A, Hassanein A, Tomita K, et al. Optimization of extreme ultra-violet light emitted from the CO2 laser-irradiated tin plasmas using 2D radiation hydrodynamic simulations[J]. Optics Express,2023,31(20):31780−31795 doi: 10.1364/OE.497282
|
[3] |
Rice B J. Extreme ultraviolet (EUV) lithography[M]. Woodhead Publishing, 2014, 42−79
|
[4] |
Chai K, Lu Q, Song Y, et al. Detection of carbon contamination in EUV multilayer mirrors based on secondary electrons[J]. Vacuum,2024,221:112869 doi: 10.1016/j.vacuum.2023.112869
|
[5] |
Wang S, Ye Z, Guo P, et al. In-situ non-destructive removal of tin particles by low-energy plasma for imitation of EUV optical mirrors self-cleaning[J]. Vacuum,2023,212:111963 doi: 10.1016/j.vacuum.2023.111963
|
[6] |
Mertens B M, Zwan B, Jager P W H, et al. Mitigation of surface contamination from resist outgassing in EUV lithography[J]. Microelectronic Engineering,2000,53:659−662 doi: 10.1016/S0167-9317(00)00399-3
|
[7] |
Yildirim O, Buitrago E, Hoefnagels R, et al. Improvements in resist performance towards EUV HVM[J]. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,2017,10143:101430Q
|
[8] |
Kanouff M P, Ray-Chaudhuri A K. A gas curtain for mitigating hydrocarbon contamination of EUV lithographic components[J]. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,1999,3676:735−742
|
[9] |
Hollenshead J T, Klebanoff L E. Modeling radiation-induced carbon contamination of extreme ultraviolet optics[J]. Journal of Vacuum Science & Technology B,2006,24(1):64−82
|
[10] |
Hollenshead J T, Klebanoff L E, Delgado G. Predicting radiation-induced carbon contamination of EUV optics[J]. Journal of Vacuum Science & Technology B,2019,37(2):021602−1-021602-24
|
[11] |
陈进新, 王宇, 谢婉露. 极紫外光刻动态气体锁抑制率的理论研究[J]. 激光与光电子学进展,2016,53:053401 (in Chinese)
Chen J X, Wang Y, Xie W L. Theoretical investigation on suppression ratio of dynamic gas lock for extreme ultraviolet lithography[J]. Laser & Optoelectronics Progress,2016,53:053401
|
[12] |
Sun J, Wang K, Wu X, et al. Theoretical research on suppression ratio of dynamic gas lock for extreme ultraviolet lithography contamination control[J]. Journal of Vacuum Science & Technology B,2022,40:042603
|
[13] |
陈进新, 王宇, 谢婉露. 极紫外光刻动态气体锁抑制率的仿真研究[J]. 激光与光电子学进展,2017,54:023401 (in Chinese)
Chen J X, Wang Y, Xie W L. Simulation investigation on suppression ratio of dynamic gas lock in extreme ultraviolet lithography[J]. Laser & Optoelectronics Progress,2017,54:023401
|
[14] |
陈进新, 王魁波, 王宇. 极紫外真空动态气体锁流场分析与研究[J]. 真空科学与技术学报,2015,35(8):940−946 (in Chinese)
Chen J X, Wang K B, Wang Y. Simulation of flow-field in dynamic gas lock for extreme ultraviolet lithography[J]. Chinese Journal of Vacuum Science and Technology,2015,35(8):940−946
|
[15] |
陈进新, 王宇, 谢婉露. 极紫外光刻动态气体锁抑制率的实验研究[J]. 光学学报,2017,37(2):0222002 (in Chinese) doi: 10.3788/AOS201737.0222002
Chen J X, Wang Y, Xie W L. Experimental research on suppression ratio of dynamic gas lock for extreme ultraviolet lithography[J]. Acta Optica Sinica,2017,37(2):0222002 doi: 10.3788/AOS201737.0222002
|
[16] |
Wang K, Gao Z, Luo Y, et al. Experimental research on airflow efficiency of dynamic gas lock for extreme ultraviolet lithography[J]. Journal of Vacuum Science & Technology B,2023,41:042602
|
[17] |
冯捷, 张红文. 炼钢基础知识[M]. 北京: 冶金工业出版社, 2005 (in Chinese)
Feng J, Zhang H W. Basics of steelmaking[M]. Beijing: Metallurgical Industry Press, 2005
|