[1] |
程建平, 张红梅. 高温真空钎焊设备的研制[J]. 电子工艺技术,2010,31(1):48−50 (in Chinese) doi: 10.3969/j.issn.1001-3474.2010.01.013
Cheng J P, Zhang H M. Development of high-temperature vacuum brazing equipment[J]. Electronics Process Technology,2010,31(1):48−50 doi: 10.3969/j.issn.1001-3474.2010.01.013
|
[2] |
Pritchard J. Hot-zone design for vacuum furnaces[J]. Industrial Heating,2007,74(9):95−99
|
[3] |
彭平. 大型真空铝钎焊装备-主要技术参数及热工程序设计与控制[J]. 真空科学与技术学报,2004(6):75−80 (in Chinese)
Peng P. Design of large aluminum vacuum brazing furnace-major specifications and heating control program[J]. Chinese Journal of Vacuum Science and Technology,2004(6):75−80
|
[4] |
周厚军, 陈秀敏, 杨斌, 等. 氧化铝真空碳热还原炉瞬态温度场模拟计算[J]. 真空科学与技术学报,2012,32(10):896−901 (in Chinese) doi: 10.3969/j.issn.1672-7126.2012.10.08
Zhou H J, Chen X M, Yang B, et al. Simulation of transient temperature field in vacuum alumina carbothermic reduction[J]. Chinese Journal of Vacuum Science and Technology,2012,32(10):896−901 doi: 10.3969/j.issn.1672-7126.2012.10.08
|
[5] |
刘明君, 赵学师. 真空炉温度均匀性测量的数值模拟研究[J]. 计测技术,2021,41(3):20−24 (in Chinese)
Liu M J, Zhao X S. Numerical simulation of measurement of temperature uniformity in vacuum furnace[J]. Metrology & Measurement Technology,2021,41(3):20−24
|
[6] |
Hao X W, Gu J F, Chen N, et al. 3-D numerical analysis on heating process of loads within vacuum heat treatment furnace[J]. Applied Thermal Engineering,2008,28(14-15):1925−1931 doi: 10.1016/j.applthermaleng.2007.12.007
|
[7] |
王宏杰. 基于AMS2750标准中高温真空炉温均匀性测试的研究[J]. 电子工业专用设备,2015,44(5):37−41 (in Chinese) doi: 10.3969/j.issn.1004-4507.2015.05.009
Wang H J. Study on high temperature vacuum furnace temperature uniformity test in AMS2750 standard based on[J]. Equipment for Electronic Products Manufacturing,2015,44(5):37−41 doi: 10.3969/j.issn.1004-4507.2015.05.009
|
[8] |
易光. 真空处理炉炉温均匀性探讨[J]. 材料工程,1997(4):14−17 (in Chinese)
Yi G. Homogeneity of temperature in vacuum heat treatment equipment[J]. Journal of Materials Engineering,1997(4):14−17
|
[9] |
空陈正伟, 高光伟, 于德军, 等. 基于有限元仿真分析的常用石墨材料电阻率测量方法及设备设计[J]. 真空科学与技术学报,2018,38(9):810−816 (in Chinese)
Chen Z W, Gao G W, Yu D J, et al. Resistivity measurement of irregularly-shaped graphite heater: A Simulation and Experimental Study[J]. Chinese Journal of Vacuum Science and Technology,2018,38(9):810−816
|
[10] |
石峰, 陈靖, 程宏昌, 等. 真空系统内一种加热器温度场分布有限元分析[J]. 真空科学与技术学报,2016,36(6):723−726 (in Chinese)
Shi F, Chen J, Cheng H C, et al. Numerical simulation of temperature field distribution on sapphire substrate in GaN growth reactor[J]. Chinese Journal of Vacuum Science and Technology,2016,36(6):723−726
|
[11] |
Xing L D, Xiao W, Bao Y P, et al. Physical modeling study for process optimization of 300-ton RH vacuum refining furnace[J]. Journal of Sustainable Metallurgy,2024,10(1):386−396 doi: 10.1007/s40831-024-00799-1
|
[12] |
王翠平. 石墨纤维材料高温导热系数获取及真空烧结炉温度场模拟[D]. 山东大学, 2020 (in Chinese)
Wang C P. Obtaining high-temperature thermal conductivity of graphite fiber material simulation of temperature field in vacuum sintering furnace[D]. Shandong University, 2020
|
[13] |
刘静, 李家栋, 王昊杰, 等. 真空渗碳炉加热系统结构优化数值模拟研究[J]. 东北大学学报(自然科学版),2019,40(5):641−646 (in Chinese)
Liu J, Li J D, Wang H J, et al. Numerical simulation to optimize heating system in vacuum carburizing furnace[J]. Journal of Northeastern University(Natural Science),2019,40(5):641−646
|
[14] |
熊梨, 张登春, 宋石初, 等. 碳化硅真空烧结炉温度场数值模拟与系统优化[J]. 金属热处理,2022,47(6):259−265 (in Chinese)
Xiong L, Zhang D C, Song S C, et al. Numerical simulation and system optimization of temperature field in silicon carbide vacuum sintering furnace[J]. Heat Treatment of Metals,2022,47(6):259−265
|
[15] |
杨松, 周磊, 刘洋, 等. 基于Fluent烧结钕铁硼真空烧结炉温度场模拟分析[J]. 金属功能材料,2023,30(5):38−42 (in Chinese)
Yang S, Zhou L, Liu Y, et al. Simulation analysis of temperature field of sintered NdFeB vacuum sintering furnace based on Fluent[J]. Metallic Functional Materials,2023,30(5):38−42
|
[16] |
解永强. 高温真空炉用金属加热元件的防变形设计[D]. 西安电子科技大学, 2016 (in Chinese)
Xie Y Q. Vacuum annealing temperature tontrol structure design of furnace and thermal field simulation[D]. Xidian University, 2016
|
[17] |
Sany X Y, Yuan Z H, Yu X J, et al. Research on the temperature uniformity of vacuum furnace and size optimization of working zone[J]. International Conference on Intelligent Computation Technology and Automation, 2016, 789−792
|
[18] |
张啸鹏. 基于建模仿真的真空烧结炉温度场研究与结构参数优化[D]. 广东工业大学, 2020 (in Chinese)
Zhang X P. Research on thermal field and structural parameters optimization of vacuum sintering furnace based on modeling and simulation[D]. Guangdong University of Technology, 2020
|
[19] |
武炳鑫, 许鸣皋, 张俊, 等. 真空高温热解炉多均匀化温度优化设计[J]. 真空科学与技术学报,2023,43(9):754−761 (in Chinese)
Wu B X, Xu M G, Zhang J, et al. Optimized design of vacuum pyrolysis furnace with multiple homogenization temperatures[J]. Chinese Journal of Vacuum Science and Technology,2023,43(9):754−761
|
[20] |
Wang Y F, Liu Z. Development of numerical modeling and temperature controller optimization for internal heating vacuum furnace[J]. IEEE Access, 2021, 122343–122352
|
[21] |
Jia J Y, Zhen X L, Chen X T, et al. Imitation analysis of cremation furnace heat transfer under the finite element simulation software[J]. Thermal Science,2020,24(5):3357−3365
|
[22] |
周晓燕, 赵乘麟, 黄乘顺, 等. 真空电阻炉退火温度对电子设备用Ti-51Ni记忆合金相变和形状行为的影响[J]. 真空科学与技术学报,2020,40(1):74−78 (in Chinese)
Zhou X Y, Zhao C L, Huang C S, et al. Effect of annealing temperature on properties of shape-memory Ti-51Ni alloy: An Experimental Study[J]. Chinese Journal of Vacuum Science and Technology,2020,40(1):74−78
|
[23] |
刘美慧. 高温电加热过程模拟分析[D]. 青岛: 中国海洋大学, 2008 (in Chinese)
Liu M H. High-temperature electric heating process simulation[D]. Qingdao: Ocean University of China, 2008
|
[24] |
张淑蓉. 石墨加热元件在真空炉中的应用研究[J]. 工业加热,2012,41(5):66−68 (in Chinese) doi: 10.3969/j.issn.1002-1639.2012.05.024
Zhang S R. The application research of the graphite heating elements to the vacuum furnace[J]. Industrial Heating,2012,41(5):66−68 doi: 10.3969/j.issn.1002-1639.2012.05.024
|
[25] |
Mukul P, Salman K, Amaresh D , et al. Critical assessment of numerical algorithms for convective-radiative heat transfer in enclosures with different geometries [J]. International Journal of Heat and Mass Transfer, 2017, 108: 627−644
|
[26] |
裴善领, 宋波, 鲁凯, 等. 基于Fluent的ALD型压力烧结炉温度场的优化模拟[J]. 硬质合金,2024,41(3):229−236 (in Chinese)
Pei S L, Song B, Lu K, et al. Optimization simulation of temperature field in ALD pressure sintering furnace based on fluent[J]. Cemented Carbides,2024,41(3):229−236
|
[27] |
Ma X, Du J, Su G, et al. Study on strengthening mechanism and high temperature mechanical properties of TiC-Fe-HEA cemented carbide[J]. Materials Today Communications,2024,24(5):1234−1242
|
[28] |
Yao Q, Zhang L, Chen H, et al. Defect analysis during vacuum sintering of large Nd: YAG laser ceramics by FEM[J]. Journal Of Materials Science-Materials in Electronics,2021,32(3):2925−2935 doi: 10.1007/s10854-020-05044-5
|
[29] |
Fu Z L, Yu X, Shang H L, et al. A new modelling method for superalloy heating in resistance furnace using FLUENT[J]. International Journal of Heat and Mass Transfer,2019,128:679−687 doi: 10.1016/j.ijheatmasstransfer.2018.08.105
|
[30] |
黄龙诚. 基于机理与数据混合驱动的高炉分布式炉温建模方法研究[D]. 浙江大学, 2013 (in Chinese)
Huang L C. Blast furnace distributed temperature modeling method research based on mechanism and data hybrid driven[D]. Zhejiang University, 2013
|
[31] |
彭刘涛. 基于机理和数据驱动混合建模的真空烧结炉温度软测量研究[D]. 广东工业大学, 2020 (in Chinese)
Peng L T. Soft measurement of temperature in vacuum sintering furnace based on mechanism and data-driven hybrid modeling[D]. Guangdong University of Technology, 2020
|