[1] |
Sanderson K, Castelvecchi D. Tiny 'quantum dot' particles win chemistry nobel[J]. Nature,2023,622(7982):227−228 doi: 10.1038/d41586-023-03048-9
|
[2] |
Jang E, Jang H. Review: quantum dot light-emitting diodes[J]. Chemical Reviews,2023,123(8):4663−4692
|
[3] |
Lin Q, Zhu Y, Wang Y, et al. Flexible quantum dot light-emitting device for emerging multifunctional and smart applications[J]. Advanced Materials,2023,35(32):2210385
|
[4] |
Kim J, Roh J, Park M, et al. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications[J]. Advanced Materials,2024,36(20):2212220 doi: 10.1002/adma.202212220
|
[5] |
Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature,1994,370(6488):354−357
|
[6] |
Liu X, Wang L, Gao Y, et al. Ultrastable and high-efficiency deep red QLEDs through giant continuously graded colloidal quantum dots with shell engineering[J]. Nano Letters,2023,23(14):6689−6697 doi: 10.1021/acs.nanolett.3c01919
|
[7] |
Fan X, Mu Z, Chen Z, et al. An Efficient green-emitting quantum dot with near-unity quantum yield and suppressed auger recombination for high-performance light-emitting diodes[J]. Chemical Engineering Journal,2023,461(1):142027
|
[8] |
Chen X, Lin X, Zhou L, et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling[J]. Nature Communications,2023,14(1):284 doi: 10.1038/s41467-023-35954-x
|
[9] |
Deng Y, Peng F, Lu Y, et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage[J]. Nature Photonics,2022,16(7):505−511 doi: 10.1038/s41566-022-00999-9
|
[10] |
Shen H B, Gao Q, Zhang Y B, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nature Photonics,2019,13(3):192−197
|
[11] |
Dai X L, Zhang Z X, Jin Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature,2014,515(7525):96−99 doi: 10.1038/nature13829
|
[12] |
Xue X, Dong J, Wang S, et al. Degradation of quantum dot light emitting diodes, the case under a low driving level[J]. Journal of Materials Chemistry C,2020,8(6):2014−2018 doi: 10.1039/C9TC04107A
|
[13] |
Ye Y, Zheng X, Chen D, et al. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes[J]. Journal of Physical Chemistry Letters,2020,11(12):4649−4654 doi: 10.1021/acs.jpclett.0c01323
|
[14] |
Qiu Y L, Gong Z P, Xu L, et al. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer[J]. ACS Applied Nano Materials,2022,5(2):2962−2972 doi: 10.1021/acsanm.2c00229
|
[15] |
Chen Q Y, Hu Y, Lin J, et al. Phenethylammonium bromide interlayer for high-performance red quantum-dot light emitting diodes[J]. Nanoscale horizons,2024,9(3):465−471 doi: 10.1039/D3NH00495C
|
[16] |
Li H Y, Zhang W J, Bian Y Y, et al. ZnF2-Assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence[J]. Nano Letters,2022,22(10):4067−4073 doi: 10.1021/acs.nanolett.2c00763
|
[17] |
Yang Z, Wu Q, Lin G, et al. All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime[J]. Materials Horizons,2019,6(10):2009−2015
|
[18] |
Zhang D, Li J, Wang L, et al. Nanoshell-driven carrier engineering of large quantum dots enables ultra-stable and efficient LEDs[J]. Nano Research,2024,17(12):10453−10459
|
[19] |
Xu H, Song J, Zhou P, et al. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes[J]. Nature Photonics,2024,18(2):186−191
|
[20] |
Fei W, Li S, Xie J, et al. X-Type ligands effect on the operational stability of heavy-metal-free quantum dot light-emitting diodes[J]. Nano Letters,2024,24(44):14066−14072
|
[21] |
Trinh L T, Nguyen B D, Ko P S, et al. Improved current efficiency of quantum dot light-emitting diodes by utilizing ZnO nanoparticles and an organic ionic interlayer[J]. Chemnanomat,2023,9(2):e202200438 doi: 10.1002/cnma.202200438
|
[22] |
Zanjani S M, Tintori F, Sadeghi S, et al. Tailored ZnO functional nanomaterials for solution-processed quantum-dot light-emitting diodes[J]. Advanced Photonics Research,2022,3(12):2200159
|
[23] |
Moyen E, Kim J H, Kim J, et al. ZnO nanoparticles for quantum-dot-based light-emitting diodes[J]. ACS Applied Nano Materials,2020,3(6):5203−5211 doi: 10.1021/acsanm.0c00639
|
[24] |
Jang H, Shin S, Lee M, et al. Positive aging in InP-based QD-LEDs encapsulated with epoxy: the role of thiol molecules and post-annealing treatment[J]. Journal of Materials Chemistry C,2023,11(41):14292−14298 doi: 10.1039/D3TC02098C
|
[25] |
Ma S, Cao F, Jia G, et al. Blue ZnSeTe quantum dot light-emitting diodes with low efficiency roll-off enabled by an in situ hybridization of ZnMgO nanoparticles and amino alcohol molecules[J]. Nanoscale,2024,16(21):10441−10447 doi: 10.1039/D4NR01515K
|
[26] |
Chang Y C, Yang S H, Chen W S. Surface functionalization of ZnO nanoparticles with sulfonate molecules as the electron transport layer in quantum dot light-emitting diodes[J]. Journal of Materials Chemistry C,2024,12(18):6423−6432
|
[27] |
Xue Z J, Li K Y, Sun Z P, Carrier transport characteristics in CdSe/CdS/Thioglycolic acid ligand quantum dots with a core-shell structure[J]. Acta Physica Sinica, 2013, 62(6): 066801
|
[28] |
Chen H, Ding K, Fan L, et al. Controlling electron transport towards efficient all-solution-processed quantum dot light emitting diodes[J]. Journal of Materials Chemistry C,2022,10(21):8373−8380 doi: 10.1039/D2TC01182D
|