[1] |
Liu P S, Chen G F. Porous Materials: Processing and applications [M]. Boston: Elsevier Science, 2014
|
[2] |
Yang J Z, Jin X, Gao H R, et al. Additive manufacturing of trabecular tantalum scaffolds by laser powder bed fusion: Mechanical property evaluation and porous structure characterization[J]. Materials Characterization,2020,170:110694 doi: 10.1016/j.matchar.2020.110694
|
[3] |
Yang S J, Luo H J, Wang L, et al. Effect of core structure on the quasi-static bending behaviors and failure mechanisms of aluminum foam sandwiches at elevated temperatures[J]. Materials Characterization,2024,208:113638 doi: 10.1016/j.matchar.2024.113638
|
[4] |
Su H H, Fu Y C, Xu J H, et al. Porous metal bond matrix with high porosity and large pore size fabricated using pore-forming agent[J]. Key Engineering Materials,2009,416:279−283 doi: 10.4028/www.scientific.net/KEM.416.279
|
[5] |
叶琦, 石新莹, 曹姗姗, 等. 多孔钛孔隙率和孔隙尺寸对其力学性能及细胞相容性的影响[J]. 口腔材料器械,2013,22(1):7−12 (in Chinese)
Ye Q, Shi X Y, Cao S S, et al. Influence of porosity and pore size on mechanical properties cytocompatibility of porous titanium[J]. Chinese Journal of Dental Materials and Devices,2013,22(1):7−12
|
[6] |
Wang N Z, Chen X, Li A, et al. Three-point bending performance of a new aluminum foam composite structure[J]. Transactions of Nonferrous Metals Society of China,2016,26:359−368 doi: 10.1016/S1003-6326(16)64088-8
|
[7] |
刘培生. 关于多孔材料的新模型[J]. 材料研究学报,2006,20(1):64−68 (in Chinese) doi: 10.3321/j.issn:1005-3093.2006.01.014
Liu P S. A new model for porous materials[J]. Chin J Mater Research,2006,20(1):64−68 doi: 10.3321/j.issn:1005-3093.2006.01.014
|
[8] |
Liu P S, Ma X M. Special review: Property relations based on the octahedral structure model with body-centered cubic mode for porous metal foams[J]. Materials and Design,2020,188:108413−108470 doi: 10.1016/j.matdes.2019.108413
|
[9] |
刘培生, 杨春艳, 程伟. 多孔材料性能模型研究3: 数理推演[J]. 材料工程,2019,47(8):59−81 (in Chinese) doi: 10.11868/j.issn.1001-4381.2018.001412
Liu P S, Yang C Y, Cheng W. Study on property model for porous materials 3: mathematical deduction[J]. Journal of Materials Engineering,2019,47(8):59−81 doi: 10.11868/j.issn.1001-4381.2018.001412
|
[10] |
Yang Q C, Zhang M J, Liu P S. Macroscopic fracture behavior of nickel foam under tension[J]. Multidiscipline Modeling in Materials and Structures,2016,12(1):110−118 doi: 10.1108/MMMS-05-2015-0025
|
[11] |
Liu P S. Tensile fracture behavior of foamed metallic materials[J]. Materials Science and Engineering A,2004,384(1-2):352−354
|
[12] |
Liu P S, Fu C, Li T F. Relationship between elongation and porosity for high porosity metals[J]. Transactions of Nonferrous Metals Society of China,1999,9(3):546−552
|
[13] |
Gibson L J, Ashby M F. Cellular Solids: Structure and properties[M]. Cambridge: Cambridge University Press, 1999
|
[14] |
Ashby M F, Evans A, Fleck N A, et al. Metal Foams: A Design Guide[M]. Boston: Elsevier Science, 2000
|
[15] |
Liu P S. Chapter 3: Porous Materials. in Materials Science Research Horizon[M]. New York: Nova Science Publishers, 2007
|