[1] |
Huth M, Porrati F, Barth S. Living up to its potential—Direct-write nanofabrication with focused electron beams[J]. Jouranl Applied Physics,2021,130(17):170901 doi: 10.1063/5.0064764
|
[2] |
Plank H, Smith D A, Haber T, et al. Fundamental proximity effects in focused electron beam induced deposition[J]. ACS Nano,2011,6(1):286−294
|
[3] |
Yu J C, Abdel-Rahman M K, Fairbrother D H, et al. Charged particle-induced surface reactions of organometallic complexes as a guide to precursor design for electron- and ion-induced deposition of nanostructures[J]. ACS Applied Materials & Interfaces,2021,13(41):48333−48348
|
[4] |
De Teresa J M, Orús P, Córdoba R, et al. Comparison between focused electron/ion beam-induced deposition at room temperature and under cryogenic conditions[J]. Micromachines,2019,10(12):799 doi: 10.3390/mi10120799
|
[5] |
Utke I, Hoffmann P, Melngailis J. Gas-assisted focused electron beam and ion beam processing and fabrication[J]. Journal Vacuum Science Technology B,2008,26(4):1197−1276 doi: 10.1116/1.2955728
|
[6] |
van Dorp W F, Wnuk J D, Gorham J M, et al. Electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV): Total cross section as a function of incident electron energy[J]. Journal of Applied Physics,2009,106(7):074903 doi: 10.1063/1.3225091
|
[7] |
Silvis-Cividjian N, Hagen C W, Kruit P. Spatial resolution limits in electron-beam-induced deposition[J]. Jouranl Applied Physics,2005,98(8):084905 doi: 10.1063/1.2085307
|
[8] |
Mansilla C, Mehendale S, Mulders J J, et al. Towards a single step process to create high purity gold structures by electron beam induced deposition at room temperature[J]. Nanotechnology,2016,27(41):415301 doi: 10.1088/0957-4484/27/41/415301
|
[9] |
De Teresa J M, Córdoba R, Fernández-Pacheco A, et al. Origin of the difference in the resistivity of As-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits[J]. Journal of Nanomaterials,2009,2009(1):936863 doi: 10.1155/2009/936863
|
[10] |
Utke I, Moshkalev S, Russell P. Nanofabrication using focused ion and electron beams: principles and applications[M]. New York: Oxford University Press, 2012: 752
|
[11] |
Plank H, Gspan C, Dienstleder M, et al. The influence of beam defocus on volume growth rates for electron beam induced platinum deposition[J]. Nanotechnology,2008,19(48):485302 doi: 10.1088/0957-4484/19/48/485302
|
[12] |
Jungwirth F, Porrati F, Knez D, et al. Focused ion beam vs focused electron beam deposition of Cobalt Silicide nanostructures using single-source precursors: implications for nanoelectronic gates, interconnects, and spintronics[J]. ACS Appl Nano Mater,2022,5(10):14729−14740
|
[13] |
Thorman R M, Kumar T P R, Fairbrother D H, et al. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors[J]. Beilstein Journal of Nanotechnology,2015,6:1904−1926 doi: 10.3762/bjnano.6.194
|