[1] Tejedor P, Crespillo M L, Joyce B A. Influence of atomic hydrogen on step stability during homoepitaxial growth on vicinal GaAs surfaces[J]. Applied Physics Letters,2006,88(6):063101 doi: 10.1063/1.2171793
[2] Rouleau C M, Park R M. GaAs substrate cleaning for epitaxy using a remotely generated atomic hydrogen beam[J]. Journal of Applied Physics,1993,73(9):4610−4613 doi: 10.1063/1.352753
[3] Okada Y, Sugaya T, Ohta S, et al. Atomic hydrogen-assisted GaAs molecular beam epitaxy[J]. Japanese Journal of Applied Physics,1995,34(1R):238 doi: 10.1143/JJAP.34.238
[4] Okada Y, Fujita T, Kawabe M. Growth modes in atomic hydrogen-assisted molecular beam epitaxy of GaAs[J]. Applied Physics Letters,1995,67(5):676−678 doi: 10.1063/1.115200
[5] Jang K Y, Okada Y, Kawabe M. Effect of atomic hydrogen on GaAs growth on GaAs(311) A substrate in molecular beam epitaxy[J]. Japanese Journal of Applied Physics,2000,39(7S):4266−4269 doi: 10.1143/JJAP.39.4266
[6] Tschersich K G, Fleischhauer J P, Schuler H. Design and characterization of a thermal hydrogen atom source[J]. Journal of Applied Physics,2008,104(3):034908 doi: 10.1063/1.2963956
[7] Tschersich K G. Intensity of a source of atomic hydrogen based on a hot capillary[J]. Journal of Applied Physics,2000,87(5):2565−2573 doi: 10.1063/1.372220
[8] Forrey R C, Côté R, Dalgarno A, et al. Collisions between metastable hydrogen atoms at thermal energies[J]. Physical Review Letters,2000,85(20):4245−4248 doi: 10.1103/PhysRevLett.85.4245
[9] Milnes A G. Heterojunctions and metal semiconductor junctions[M]. Amsterdam: Elsevier, 2012
[10] Wicks G W. Molecular beam epitaxy of III–V semiconductors[J]. Critical Reviews in Solid State and Materials Sciences,1993,18(3):239−260 doi: 10.1080/10408439308242561
[11] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers: I. Misfit dislocations[J]. Journal of Crystal Growth,1974,27:118−125
[12] Nunn W, Truttmann T K, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors[J]. Journal of Materials Research,2021,36(23):4846−4864 doi: 10.1557/s43578-021-00377-1
[13] 齐鸣, 罗晋生. GaAs/InGaAs应变异质结构临界厚度的Raman散射和PL谱分析[J]. 固体电子学研究与进展,1993,13(4):292−297 (in Chinese) Qi M, Luo J S. Analysis of critical layer thickness in GaAs/InGaAs strained heterostructures by Raman scattering and photoluminescence[J]. Research & Progress of Solid State Electronics,1993,13(4):292−297
[14] Crumbaker T E, Lee H Y, Hafich M J, et al. Growth of InP on Si substrates by molecular beam epitaxy[J]. Applied Physics Letters,1989,54(2):140−142 doi: 10.1063/1.101209
[15] Tsao J Y. Materials fundamentals of molecular beam epitaxy[M]. Boston: Academic Press, 1993
[16] Yun H K. Growth and characterization of gallium arsenic nitride compound semiconductors[D]. Washington: University of Washington, 2001
[17] Strite S, Morkoc H. GaN, AlN, and InN: a review[J]. Journal of Vacuum Science & Technology B,1992,10(4):1237−1266
[18] Otsuka T, Ihara M, Komiyama H. Hydrogen dissociation on hot tantalum and tungsten filaments under diamond deposition conditions[J]. Journal of Applied Physics,1995,77(2):893−898 doi: 10.1063/1.359015
[19] Lee R L, Schaffer W J, Chai Y G, et al. Material effects on the cracking efficiency of molecular beam epitaxy arsenic cracking furnaces[J]. Journal of Vacuum Science & Technology B,1986,4(2):568−570
[20] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Oxford University Press, 1994
[21] Bird G A. Recent advances and current challenges for DSMC[J]. Computers & Mathematics with Applications,1998,35(1-2):1−14
[22] Tokumasu T, Matsumoto Y. Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method[J]. Physics of Fluids,1999,11(7):1907−1920 doi: 10.1063/1.870053
[23] Stefanov S K. On DSMC calculations of rarefied gas flows with small number of particles in cells[J]. SIAM Journal on Scientific Computing,2011,33(2):677−702 doi: 10.1137/090751864
[24] Bird G A. Chemical reactions in DSMC[J]. AIP Conference Proceedings,2011,1333(1):1195−1202
[25] Bird G A. The Q-K model for gas-phase chemical reaction rates[J]. Physics of Fluids,2011,23(10):106101 doi: 10.1063/1.3650424
[26] Bergemann F, Boyd I D. New discrete vibrational energy model for the direct simulation Monte Carlo method[M]//Shizgal B D, Weaver D P. Rarefied gas dynamics: experimental techniques and physical systems. New York: American Institute of Aeronautics and Astronautics, 1994: 174−183
[27] Bird G A. A comparison of collision energy-based and temperature-based procedures in DSMC[J]. AIP Conference Proceedings,2008,1084(1):245−250
[28] Scanlon T J, White C, Borg M K, et al. Open-source direct simulation Monte Carlo chemistry modeling for hypersonic flows[J]. AIAA Journal,2015,53(6):1670−1680 doi: 10.2514/1.J053370
[29] Park J H, Bahukudumbi P, Beskok A. Rarefaction effects on shear driven oscillatory gas flows: a direct simulation Monte Carlo study in the entire Knudsen regime[J]. Physics of Fluids,2004,16(2):317−330 doi: 10.1063/1.1634563
[30] Prasanth P S, Kakkassery J K. Direct simulation Monte Carlo (DSMC): a numerical method for transition-regime flows-a review[J]. Journal of the Indian Institute of Science,2006,86(3):169−192
[31] Mankelevich Y A, Ashfold M N R, Umemoto H. Molecular dissociation and vibrational excitation on a metal hot filament surface[J]. Journal of Physics D: Applied Physics,2014,47(2):025503 doi: 10.1088/0022-3727/47/2/025503
[32] Plotnikov M, Shkarupa E. DSMC simulation of two-step dissociation-recombination of hydrogen on tantalum surface[J]. Computers & Fluids,2021,214:104778
[33] Mankelevich Y A. Plasma and thermally stimulated deposition of diamond films: multidimensional models of chemical reactors[D]. Moscow: Moscow State University, 2013