[1] |
Tang H, Menabde S G, Anwar T, et al. Photo-modulated optical and electrical properties of graphene[J]. Nanophotonics,2022,11(5):917−940
|
[2] |
Wang J, Mu X, Sun M. The thermal, electrical and thermoelectric properties of graphene nanomaterials[J]. Nanomaterials,2019,9(2):218−247 doi: 10.3390/nano9020218
|
[3] |
Kumar V. Linear and nonlinear opticalproperties of graphene: a review[J]. Journal of electronic materials,2021,50(7):3773−3799
|
[4] |
Sun Y W, Papageorgiou D G, Humphreys C J, et al. Mechanical properties of graphene[J]. Applied physics reviews,2021,8(2):021310 doi: 10.1063/5.0040578
|
[5] |
Chen S, Li Z, Gao Y, et al. Preparation of few-layer graphene by annealing Ni film with low carbon content deposited by direct current magnetron sputtering[J]. Vacuum,2024,227:113421 doi: 10.1016/j.vacuum.2024.113421
|
[6] |
Edwards R S, Coleman K S. Graphene film growth on polycrystalline metals[J]. Accounts of chemical research,2013,46(1):23−30 doi: 10.1021/ar3001266
|
[7] |
Chen X, Zhang L, Chen S. Large area CVD growth of graphene[J]. Synthetic metals,2015,210:95−108
|
[8] |
Park Y, Kim Y, Myung C W, et al. Two-dimensional excitonic photoluminescence in graphene on a Cu surface[J]. ACS nano,2017,11(3):3207−3212
|
[9] |
Hu Y G, Ji M H, Peng J P, et al. Anomalous temperature dependence of the magnetoresistance in vertical Ni/graphene/Ni junctions[J]. Journal of magnetism and magnetic materials,2019,487:165317 doi: 10.1016/j.jmmm.2019.165317
|
[10] |
Zhang Y, Zhang L Y, Zhou C W. Review of chemical vapor deposition of graphene and related applications[J]. Accounts of chemical research,2013,46(10):2329−2339
|
[11] |
Xiong W, Zhou Y S, Hou W J, et al. Solid-state graphene formation via a nickel carbide intermediate phase[J]. RSC advances,2015,5(120):99037−99043 doi: 10.1039/C5RA18682J
|
[12] |
Li Y F, Wu Y, Zhou Y, et al. Diffusion, nucleation, and self-optimization in the forming process of graphene in annealed nickel–carbon alloy[J]. The journal of physical chemistry C,2017,121(38):21001−21010 doi: 10.1021/acs.jpcc.7b06620
|
[13] |
Li H C, Li X W, Wei J, et al. Crystalline transformation from ta-C to graphene induced by a catalytic Ni layer during annealing[J]. Diamond and related materials,2020,101:107556
|
[14] |
Kwak J, Kwon T Y, Chu J H, et al. In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources[J]. Physical chemistry chemical physics,2013,15(25):10446−10452 doi: 10.1039/c3cp50959a
|
[15] |
Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano letters,2009,9(12):4268−4272
|
[16] |
Huang M, Ruoff R S. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates[J]. Accounts of chemical research,2020,53(4):800−811 doi: 10.1021/acs.accounts.9b00643
|
[17] |
Reina A, Thiele S, Jia X, et al. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces[J]. Nano research,2010,2(6):509−516
|
[18] |
Liu X, Fu L, Liu N, et al. Segregation growth of graphene on Cu–Ni Alloy for precise Layer control[J]. The journal of physical chemistry C,2011,115(24):11976−11982 doi: 10.1021/jp202933u
|
[19] |
Wan D Y, Lin T Q, Bi H, et al. Autonomously controlled homogenous growth of wafer-sized high-quality graphene via a smart janus substrate[J]. Advanced functional materials,2012,22(5):1033−1039 doi: 10.1002/adfm.201102560
|
[20] |
Liu W, Kraemer S, Sarkar D, et al. Controllable and rapid synthesis of high-quality and large-area bernal stacked bilayer graphene using chemical vapor deposition[J]. Chemistry of materials,2013,26(2):907−915
|
[21] |
Takesaki Y, Kawahara K, Hibino H, et al. Highly uniform bilayer graphene on epitaxial Cu–Ni(111) alloy[J]. Chemistry of materials,2016,28(13):4583−4592 doi: 10.1021/acs.chemmater.6b01137
|
[22] |
Kouznetsov V, Macák K, Schneider J M. A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surface & coatings technology,1999,122(2−3):290−293
|
[23] |
Li Q, Ying M J, Liu Z W, et al. The low temperature growth of stable p-type ZnO films in HiPIMS[J]. Plasma science and technology,2021,23(9):095503 doi: 10.1088/2058-6272/ac0687
|
[24] |
Hsieh P Y, Chen Y H, Matthews David T A, et al. HiPIMS obtained carbon nano-coatings on copper foil and their thermal conductivity[J]. Surface and coatings technology,2022,442:128565 doi: 10.1016/j.surfcoat.2022.128565
|
[25] |
Ogawa Y, Hu B S, Orofeo C M, et al. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films[J]. The journal of physical chemistry letters,2012,3(2):219−226 doi: 10.1021/jz2015555
|
[26] |
Popov D N, Kotlarova T K, Uzunov T D. Oxygen incorporation in Al thin films during deposition by dc magnetron sputtering[J]. Vacuum,1988,38(11):1015−1017 doi: 10.1016/0042-207X(88)90566-0
|
[27] |
Moram M A, Barber Z H, Humphreys C J. The effect of oxygen incorporation in sputtered scandium nitride films[J]. Thin solid films,2008,516(23):8569−8572 doi: 10.1016/j.tsf.2008.05.050
|
[28] |
Kovács G J, Bertóti I, Radnóczi G. X-ray photoelectron spectroscopic study of magnetron sputtered carbon–nickel composite films[J]. Thin solid films,2008,516(21):7942−7946 doi: 10.1016/j.tsf.2008.06.005
|
[29] |
Abrasonis G, Scheinost A C, Zhou S, et al. X-ray spectroscopic and magnetic investigation of C: Ni nanocomposite films grown by ion beam cosputtering[J]. Journal of physical chemistry C,2008,112(33):2628−12637
|
[30] |
Xiong W, Guo Q, Guo Z, et al. Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution[J]. Journal of materials chemistry A,2018,6(10):4297−4304 doi: 10.1039/C7TA10202J
|
[31] |
Bayer B C, Bosworth D A, Michaelis F B, et al. In situ observations of phase transitions in metastable nickel (-carbide)/carbon nanocomposites[J]. The journal of physical chemistry C,2016,120(39):22571−22584
|
[32] |
Ehrlich A, Kühn M, Richter F, et al. Complex characterisation of vacuum arc-deposited chromium nitride thin films[J]. Surface and coatings technology,1995,76−77:280−286 doi: 10.1016/0257-8972(95)02583-9
|
[33] |
Li Q, Yang L Z, Wang Z D, et al. The superior properties of CrN coatings prepared by high power pulsed reactive magnetron sputtering[J]. AIP advances,2020,10(1):015125 doi: 10.1063/1.5132783
|
[34] |
Panciera F, Hoummada K, Perrin C, et al. Ni(Pt)-silicide contacts on CMOS devices: Impact of substrate nature and Pt concentration on the phase formation[J]. Microelectronic engineering,2014,120(25):34−40
|
[35] |
Li X, Cheng B, Asempah I, et al. Effect of different Ni contents on thermal stability of Cu(Ni) alloy film[J]. Journal of electronic materials,2020,49(10):5674−5680 doi: 10.1007/s11664-020-08340-2
|
[36] |
Wang L, Guo X, Dong S T, et al. Effect of carbon-doped Cu(Ni) alloy film for barrierless copper interconnect[J]. Coatings,2024,14(1):68−78 doi: 10.3390/coatings14010068
|
[37] |
Cheng B, Chen H M, Asempah I, et al. Self-formed diffusion layer in Cu(Re) alloy film for barrierless copper metallization[J]. Coatings,2022,12(5):613−621 doi: 10.3390/coatings12050613
|
[38] |
Seah C M, Chai S P, Mohamed A R. Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon,2014,70:1−21 doi: 10.1016/j.carbon.2013.12.073
|
[39] |
Grigore E, El Mel A A, Granier A, et al. The influence of Ni content on the characteristics of C–Ni thin films[J]. Surface & coatings technology,2012,211:188−191
|
[40] |
Chen S, Cai W, Piner R D, et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils[J]. Nano letters,2011,11(9):3519−3525
|
[41] |
Bleu Y, Bourquard F, Michalon J Y, et al. Transfer-free graphene synthesis by nickel catalyst dewetting using rapid thermal annealing[J]. Applied surface science,2021,555:149492
|
[42] |
Tan P, Fu L C, Teng J, et al. Effect of texture on wear resistance of tantalum nitride film[J]. Tribology international,2019,133:126−135 doi: 10.1016/j.triboint.2019.01.001
|
[43] |
Cho J H, Gorman J J, Na S R, et al. Growth of monolayer graphene on nanoscale copper-nickel alloy thin films[J]. Carbon,2017,115:441−448 doi: 10.1016/j.carbon.2017.01.023
|
[44] |
Zheng M, Takei K, Hsia B, et al. Metal-catalyzed crystallization of amorphous carbon to graphene[J]. Applied physics letters,2010,96(6):063110 doi: 10.1063/1.3318263
|