[1] Xie H. Overview of the Semiconductor photocathode research in China[J]. Micromachines,2021,12(11):1376−1376 doi: 10.3390/mi12111376
[2] Jani H, Chen L, Duan L. Femtosecond pump-probe study of negative electron affinity GaAs/AlGaAs photocathodes[C]. Ultrafast Phenornena & Nanophotonics XXII, Proceedings of SPIE, 2018, 10530: 105300X
[3] Bourree L E, Chasse D R, Thamban P L S, et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD[J]. SPIE,2003,4796:11−22
[4] Jani H, Chen L, Duan L. Pre-emission study of photoelectron dynamics in a GaAs/AlGaAs photocathode[J]. Journal of Quantum Electronics,2020,56(1):1−8
[5] Dowell D H, Bazarov I, Dunham B, et al. Cathode R&D for future light sources[J]. Nuclear Instruments & Methods in Physics Research,2010,622(3):685−697
[6] Li X M, Zhou L W. Temporal characteristics of GaAs NEA and alkali metal photocathode[J]. Journal of Beijing Institute of Technology,2003,12(4):381−384
[7] La Rue R A, Edgecumbe J P, Davis G A, et al. High quantum efficiency photomultiplier with fast time response[J]. SPIE,1993,2022:64−73
[8] 张益军. 半导体光电阴极的研究进展[J]. 红外技术,2022,44(8):778−791 (in Chinese) Zhang Y J. Progress in reseatch on semiconductor photocathodes[J]. Infrared Technology,2022,44(8):778−791
[9] Karkare S, Dimitrov D, Schaff W, et al. Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes[J]. Journal of Applied Physics,2013,113:104904
[10] Karkare S, Boulet L, Cultrera L, et al. Ultrabright and ultrafast III-V semiconductor photocathodes[J]. Physical Review Letters,2014,112(9):097601 doi: 10.1103/PhysRevLett.112.097601
[11] 岳江楠, 李禹晴, 陈鑫龙, 等. n-InP/p-InP/p-InGaAs场助光电阴极理论建模与仿真[J]. 真空科学与技术学报,2023,43(6):547−553 (in Chinese) Yue J N, Li Y Q, Chen X L, et al. Theoretical modeling and simulation of n-InP/p-InP/p-InGaAs field-assisted photocathode[J]. Chinese Journal of Vacuum Science and Technology,2023,43(6):547−553
[12] Jones L B, Rozhkov S A, Bakin V V, et al. Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source[C]. 18th International Spin Physics Symposium, 2009, 1149(1): 1057−1061
[13] Guo L H, Li J M, Hou X. Calculation of temporal response of field-assited transmission-mode GaAs NEA photocathodes[J]. Solid State Electronics[J],1990,33(4):435−439 doi: 10.1016/0038-1101(90)90047-I
[14] 郭里辉, 侯洵. 透射式GaAs光电阴极响应时间的理论分析[J]. 电子学报,1989,17(5):118−120 (in Chinese) doi: 10.3321/j.issn:0372-2112.1989.05.020 Guo L H, Hou X. Theoretic analysls of temporal response of transmission mode GaAs photocathodes[J]. Acta Electronica Sinica,1989,17(5):118−120 doi: 10.3321/j.issn:0372-2112.1989.05.020
[15] Li J M, Guo L H, Hou X. Calculation of temporal response for field-assisted InP/InGaAs/InP semiconductor photocathodes[J]. Chinese Science Bulletinm,1992,37(24):2047−2051
[16] 蔡志鹏, 杨文正, 唐伟东, 等. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析[J]. 物理学报,2012,61(18):511−516 (in Chinese) doi: 10.7498/aps.61.187901 Cai Z P, Yang W Z, Tang W D, et al. Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes[J]. Acta Physica Sinica,2012,61(18):511−516 doi: 10.7498/aps.61.187901
[17] Cai Z P, Yang W Z, Tang W D, et al. Numerical analysis of temporal response of a large exponential-doping transmission-mode GaAs photocathode[J]. Materials Science in Semiconductor Processing,2013,16(2):238−244
[18] 韩明, 郭欣, 邱洪金, 等. 透射式 GaAs 光电阴极时间分辨特性研究[J]. 红外与激光工程,2022,51(8):20210761−1−5 (in Chinese) doi: 10.3788/IRLA20210761 Han M, Guo X, Qiu H J, et al. Study on the time-resolved characteristics of the transmissionmode GaAs photocathode[J]. Infrared and Laser Engineering,2022,51(8):20210761−1−5 doi: 10.3788/IRLA20210761
[19] 岳江楠, 李禹晴, 陈鑫龙, 等. 场助光电阴极研究进展[J]. 光电子技术,2022,42(4):248−266 (in Chinese) Yue J N, Li Y Q, Chen X L. Development of field assisted photocathode[J]. Optoelectronic Technology,2022,42(4):248−266
[20] 周振辉, 徐向晏, 刘虎林, 等. 高量子效率InP/In0.53Ga0.47As/InP红外光电阴极模拟[J]. 红外与激光工程,2019,48(02):247−253 (in Chinese) Zhou Z H, Xu X Y, Liu H L, et al. High quantum efficiency InP/In0.53Ga0.47As/InP infrared photocathode simulation[J]. Infrared and Laser Engineering,2019,48(02):247−253
[21] Zhou R, Jani H M, Zhang Y J, et al. Dynamic photoelectron transport in stepwise-doped GaAs photocathodes[J]. Scientifc Reports,2022,12:12936 doi: 10.1038/s41598-022-16993-8
[22] Zhou R, Jani H M, Zhang Y J, et al. Photoelectron transportation dynamics in GaAs photocathodes[J]. Journal of Applied Physics,2021,130:113101 doi: 10.1063/5.0057458
[23] 蔡志鹏, 姚军财, 黄文登, 等. 具有e指数内建电场的透射式GaAs光电阴极响应特性的理论分析[J]. 发光学报,2018,39(5):661−667 (in Chinese) doi: 10.3788/fgxb20183905.0661 Cai Z P, Yao J C, Huang W D, et al. Theoretical study of response characteristics of transmission-mode GaAs photocathodes with exponential inner electric field[J]. Chinese Journal of Luminescence,2018,39(5):661−667 doi: 10.3788/fgxb20183905.0661
[24] 邹继军, 常本康, 杨智. 指数掺杂GaAs光电阴极量子效率的理论计算[J]. 物理学报,2007,56(5):2992−2997 (in Chinese) doi: 10.7498/aps.56.2992 Zou J J, Chang B K, Yang Z. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes[J]. Acta Physica Sinica,2007,56(5):2992−2997 doi: 10.7498/aps.56.2992
[25] 常本康, GaAs基光电阴极[M]. 北京: 科学出版社, 2017 (in Chinese) Chang B K. GaAs-based photocathodes[M]. Beijing: Science Press, 2017
[26] Sadao A. Optical constants of crystalline and amorphous semiconductors: Numerical data and graphical information[M]. Springer Science, 1999