[1] |
Besagni G, Mereu R, Inzoli F. Ejector refrigeration: A comprehensive review[J]. Renewable and Sustainable Energy Reviews,2016,53:373−407 doi: 10.1016/j.rser.2015.08.059
|
[2] |
Ma X, Zhang W, Omer S A, et al. Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications[J]. Applied Thermal Engineering,2010,30(11-12):1320−1325 doi: 10.1016/j.applthermaleng.2010.02.011
|
[3] |
Ghaebi H, Parikhani T, Rostamzadeh H, et al. Proposal and assessment of a novel geothermal combined cooling and power cycle based on Kalina and ejector refrigeration cycles[J]. Applied Thermal Engineering,2018,130:767−781 doi: 10.1016/j.applthermaleng.2017.11.067
|
[4] |
Ruangtrakoon N, Aphornratana S, Sriveerakul T. Experimental studies of a steam jet refrigeration cycle: effect of the primary nozzle geometries to system performance[J]. Experimental thermal and fluid science,2011,35(4):676−683 doi: 10.1016/j.expthermflusci.2011.01.001
|
[5] |
Fu W, Li Y, Liu Z, et al. Numerical study for the influences of primary nozzle on steam ejector performance[J]. Applied Thermal Engineering,2016,106:1148−1156 doi: 10.1016/j.applthermaleng.2016.06.111
|
[6] |
Hu J, Shi J, Liang Y, et al. Numerical and experimental investigation on nozzle parameters for R410A ejector air conditioning system[J]. International journal of refrigeration,2014,40:338−346 doi: 10.1016/j.ijrefrig.2013.12.008
|
[7] |
Chunnanond K, Aphornratana S. An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector[J]. Applied thermal engineering,2004,24(2-3):311−322 doi: 10.1016/j.applthermaleng.2003.07.003
|
[8] |
张国玉, 王晓冬, 刘静雯. 喷嘴出口状态对水蒸汽喷射器流动行为及其性能的影响[J]. 真空科学与技术学报,2023,43(9):762−770 (in Chinese)
Zhang G Y, Wang X D, Liu J W. Numerical investigation of the nozzle exit state and its effect on the performance of the steam ejector[J]. Chinese Journal Vacuum Science and Technology,2023,43(9):762−770
|
[9] |
Ruangtrakoon N, Thongtip T, Aphornratana S, et al. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle[J]. International Journal of Thermal Sciences,2013,63:133−145 doi: 10.1016/j.ijthermalsci.2012.07.009
|
[10] |
Reis L B, dos Santos Gioria R. Optimization of liquid jet ejector geometry and its impact on flow fields[J]. Applied Thermal Engineering,2021,194:117132 doi: 10.1016/j.applthermaleng.2021.117132
|
[11] |
Zhang G, Dykas S, Yang S, et al. Optimization of the primary nozzle based on a modified condensation model in a steam ejector[J]. Applied Thermal Engineering,2020,171:115090 doi: 10.1016/j.applthermaleng.2020.115090
|
[12] |
Ahmed F, Chen W. Investigation of steam ejector parameters under three optimization algorithm using ANN[J]. Applied Thermal Engineering,2023,225:120205 doi: 10.1016/j.applthermaleng.2023.120205
|
[13] |
Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries[J]. International Journal of Thermal Sciences,2007,46(8):823−833 doi: 10.1016/j.ijthermalsci.2006.10.012
|
[14] |
Xiao J, Wu Q, Chen L, et al. Assessment of different CFD modeling and solving approaches for a supersonic steam ejector simulation[J]. Atmosphere,2022,13(1):144 doi: 10.3390/atmos13010144
|
[15] |
Han Y, Wang X, Sun H, et al. CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance[J]. Energy,2019,167:469−483 doi: 10.1016/j.energy.2018.10.195
|
[16] |
Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results[J]. International Journal of Thermal Sciences,2007,46(8):812−822 doi: 10.1016/j.ijthermalsci.2006.10.014
|
[17] |
Czerwiński G, Wołoszyn J. Optimization of air cooling system using adjoint solver technique[J]. Energies,2021,14(13):3753 doi: 10.3390/en14133753
|
[18] |
Roth R, Ulbrich S. A discrete adjoint approach for the optimization of unsteady turbulent flows[J]. Flow, turbulence and combustion,2013,90:763−783 doi: 10.1007/s10494-012-9439-3
|