[1] 迟岩, 杨白桦, 王其乐. “双碳”目标下能源企业绿色低碳发展研究[J]. 能源与节能,2023(10):80−82 (in Chinese) Chi Y, Yang B H, Wang Q L. Green and low-carbon development of energy enterprises under goal of "double carbon"[J]. Energy and Energy Conservation,2023(10):80−82
[2] Umamaheswara Rao M, Bhargavi K V S S, Chawdhury P, et al. Non-thermal plasma assisted CO2 conversion to CO: Influence of non-catalytic glass packing materials[J]. Chemical Engineering Science,2023,267:118376 doi: 10.1016/j.ces.2022.118376
[3] 齐啸. CO2捕集与资源化利用技术现状及发展方向[J]. 化学工程师,2023,37(1):58−62 (in Chinese) Qi X. Current situation and development direction of CO2 capture and resource utilization technology[J]. Chemical Engineer,2023,37(1):58−62
[4] Zhang S, Shen Y, Wang L, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges[J]. Applied Energy,2019,239:876−897 doi: 10.1016/j.apenergy.2019.01.242
[5] Vidal-López A, López E D, Comas-Vives A. Enhanced catalytic performance of single-atom Cu on Mo2C toward CO2/CO hydrogenation to methanol: a first-principles study[J]. Catalysis Science & Technology,2024,14(23):6904−6916
[6] Zhong J, Yang X, Wu Z, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews,2020,49(5):1385−1413 doi: 10.1039/C9CS00614A
[7] Wu Z, Shen J, Li C, et al. Mo2TiC2 MXene-supported Ru clusters for efficient photothermal reverse Water–Gas Shift[J]. ACS Nano,2023,17(2):1550−1559 doi: 10.1021/acsnano.2c10707
[8] Tang R, Zhu Z, Li C, et al. Ru-Catalyzed reverse water gas shift reaction with Near-Unity selectivity and superior stability[J]. ACS Materials Letters,2021,3(12):1652−1659 doi: 10.1021/acsmaterialslett.1c00523
[9] Daza Y A, Kuhn J N. CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels[J]. RSC Advances,2016,6(55):49675−49691 doi: 10.1039/C6RA05414E
[10] Sun E, Wan G, Haribal V, et al. Low-temperature carbon dioxide conversion via reverse water-gas shift thermochemical looping with supported iron oxide[J]. Cell Reports Physical Science,2023,4(9):101581 doi: 10.1016/j.xcrp.2023.101581
[11] Cui X, Kær S K. Thermodynamic analyses of a moderate-temperature process of carbon dioxide hydrogenation to methanol via reverse water–gas shift with in situ water removal[J]. Industrial & Engineering Chemistry Research,2019,58(24):10559−10569
[12] Joshi N, Loganathan S. Methanol synthesis from CO2 using Ni and Cu supported Fe catalytic system: Understanding the role of nonthermal plasma surface discharge[J]. Plasma Processes and Polymers,2021,18(5):2000104 doi: 10.1002/ppap.202000104
[13] Joshi N, Sivachandiran L. Exploring the feasibility of liquid fuel synthesis from CO2 under cold plasma discharge: role of plasma discharge in binary metal oxide surface modification[J]. RSC Advances,2021,11(44):27757−27766 doi: 10.1039/D1RA04852J
[14] Khan M K, Butolia P, Jo H, et al. Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-Amorphous AlOx bifunctional catalysts[J]. ACS Catalysis,2020,10(18):10325−10338 doi: 10.1021/acscatal.0c02611
[15] Gao J, Wang Y, Ping Y, et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas[J]. RSC Advances,2012,2(6):2358 doi: 10.1039/c2ra00632d
[16] Yap D, Tatibouët J M, Batiot-Dupeyrat C. Carbon dioxide dissociation to carbon monoxide by non-thermal plasma[J]. Journal of CO2 Utilization,2015,12:54−61 doi: 10.1016/j.jcou.2015.07.002
[17] Ray D, Chawdhury P, Bhargavi K. V. S. S, et al. Ni and Cu oxide supported γ-Al2O3 packed DBD plasma reactor for CO2 activation[J]. Journal of CO2 Utilization,2021,44:101400 doi: 10.1016/j.jcou.2020.101400
[18] Quigley K M, Althoff A G, Donati G L. Inductively coupled plasma optical emission spectrometry as a reference method for silicon estimation by near infrared spectroscopy and potential application to global-scale studies of plant chemistry[J]. Microchemical Journal,2016,129:231−235 doi: 10.1016/j.microc.2016.06.028
[19] Ray D, Subrahmanyam Ch. CO2 decomposition in a packed DBD plasma reactor: influence of packing materials[J]. RSC Advances,2016,6(45):39492−39499 doi: 10.1039/C5RA27085E
[20] Mei D, He Y L, Liu S, et al. Optimization of CO2 conversion in a cylindrical dielectric barrier discharge reactor using design of experiments: optimization of CO2 conversion[J]. Plasma Processes and Polymers,2016,13(5):544−556 doi: 10.1002/ppap.201500159
[21] Kwak J H, Kovarik L, Szanyi J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts[J]. ACS Catalysis,2013,3(9):2094−2100 doi: 10.1021/cs4001392
[22] Mei D, Zhu X, He Y L, et al. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials[J]. Plasma Sources Science and Technology,2014,24(1):015011 doi: 10.1088/0963-0252/24/1/015011
[23] Nunnally T, Gutsol K, Rabinovich A, et al. Dissociation of CO2 in a low current gliding arc plasmatron[J]. Journal of Physics D: Applied Physics,2011,44(27):274009 doi: 10.1088/0022-3727/44/27/274009
[24] Indarto A, Yang D R, Choi J W, et al. Gliding arc plasma processing of CO2 conversion[J]. Journal of Hazardous Materials,2007,146(1-2):309−315 doi: 10.1016/j.jhazmat.2006.12.023
[25] Adamovich I, Agarwal S, Ahedo E, et al. The 2022 Plasma Roadmap: low temperature plasma science and technology[J]. Journal of Physics D: Applied Physics,2022,55(37):373001 doi: 10.1088/1361-6463/ac5e1c
[26] Luo Y, Yue X, Zhang H, et al. Recent advances in energy efficiency optimization methods for plasma CO2 conversion[J]. Science of The Total Environment,2024,906:167486 doi: 10.1016/j.scitotenv.2023.167486